

I/O Expansion

Serial Bases IOE-4404 Expansion Modules

IOE-4404 IOE-4422 IOEX-4404 IOEX-4422 IOEX-4440

Covering Firmware 2.2.2

User & Reference Manual

Part Number: LUM0017AB Revision: Sep-2019

Safety Information

The products described in this manual can fail in a variety of modes due to misuse, age, or malfunction and is not designed or intended for used in systems requiring fail-safe performance, including life safety systems. Systems with the products must be designed to prevent personal injury and property damage during product operation and in the event of product failure.

Warning! Do not remove or insert the Ethernet or diagnostics cable while circuit is live unless the area is known to be free of ignition concentrations of flammable gasses or vapors.

FreeWave Technologies, Inc. warrants the FreeWave® I/O Expansion (Product) that you have purchased against defects in materials and manufacturing for a period of two years from the date of shipment, depending on model number. In the event of a Product failure due to materials or workmanship, FreeWave will, at its discretion, repair or replace the Product. For evaluation of Warranty coverage, return the Product to FreeWave upon receiving a Return Material Authorization (RMA). The replacement product will remain under warranty for 90 days or the remainder of the original product warranty period, whichever is longer.

IN NO EVENT WILL FREEWAVE TECHNOLOGIES, INC., ITS SUPPLIERS, OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES ARISING FROM THE USE OF OR INABILITY TO USE THIS PRODUCT. THIS INCLUDES BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, INABILITY TO ACCESS OR SEND COMMUNICATION OR DATA, PERSONAL INJURY OR DAMAGE, OR OTHER LOSS WHICH MAY ARISE FROM THE USE OF THIS PRODUCT. THE WARRANTY IS EXCLUSIVE AND ALL OTHER WARRANTIES EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE ARE EXPRESSLY DISCLAIMED.

FreeWave's Warranty does not apply in the following circumstances:

- 1. If Product repair, adjustments, or parts replacements are required due to accident, neglect, or undue physical, electrical, or electromagnetic stress.
- 2. If Product is used outside of FreeWave specifications as stated in the Product's data sheet.
- 3. If Product has been modified, repaired, or altered by Customer unless FreeWave specifically authorized such alterations in each instance in writing. Where applicable, this includes the addition of conformal coating.

FreeWave Technologies, Inc. 5395 Pearl Parkway, Boulder, CO 80301 303.381.9200 Toll Free: 1.866.923.6168 Fax: 303.786.9948

Copyright © 2019 by FreeWave Technologies, Inc. All rights reserved.

www.freewave.com

Page 2 of 103

Copyright © 2019 FreeWave

LUM0017AB Rev Sep-2019

Table Of Contents

Preface	7
1. Overview	9
1.1. Base Modules and Expansion Modules	10
2. Connections	12
2.1. Expansion Module Connectors	13
2.1.1. Expansion Module Data Connector	13
2.1.2. Expansion Module Diagnostics Connector	14
2.2. Serial Base Connectors	15
2.2.1. Serial Base Data Connector	15
2.2.2. Serial Base Diagnostics Connector	16
3. Installation	
3.1. Power Connector - Serial Base 485	18
3.2. Powering Serial Bases and Expansion Modules	19
4. Set Up and Programming	
4.1. Reading Serial Bases and Expansion Modules in Tool Suite	21
4.2. Defining Channel Settings in Tool Suite	23
4.3. Upgrade Serial Bases and Expansion Modules to the Latest Firmware	26
4.4. Programming Stack Settings in Tool Suite	
4.5. Settings That Apply to the Entire Stack	30
4.5.1. Serial Port Communication between the Computer and Stack	30
4.5.2. Communication Timeout Settings and Required Stack Power	31
4.5.3. Communication and Message Characteristics of Modbus	
5. Channel Functions and Specifications	
5.1. IOE-4440 and IOEX-4440 Channels	34
5.2. IOE-4422 and IOEX-4422 Channels	
5.3. IOE-4404 and IOEX-4404 Channels	
6. Universal Configurable Channels	
6.1. Digital Input - Universal Channel	
6.1.1. Universal Digital Input Configuration	
6.1.2. Digital Input Registers NOT in Tool Suite	
6.1.3. Universal Channel Configured as a Digital Input	
6.2. Digital Output - Universal Channel	
6.2.1. Universal Digital Output Configuration	
6.2.2. Tool Suite Serial Base Stack Settings	
6.2.3. Digital Output Registers NOT in Tool Suite	
6.2.4. Universal Channel Configured as an Digital Output	
6.3. Analog Input - Universal Channel	42

LUM0017AB Rev Sep-2019

Page 3 of 103

Copyright © 2019 FreeWave

6.3.1. Universal Analog Input Configuration	
6.3.2. Tool Suite Serial Base Stack Settings	45
6.3.3. Universal Channel Configured as an Analog Input	45
6.4. Analog Output - Universal Channel	47
6.4.1. Universal Analog Output Configuration	
6.4.2. Universal Channel Configured as an Analog Output	
6.5. Sensor Power - Universal Channel	
6.5.1. Universal Sensor Power Channel Configuration	
6.5.2. Universal Channel Configured a Sensor Power	
7. Input-Only Channels	51
7.1. Digital Input - Input-Only Channel	
7.1.1. Input-Only Channel Digital Input Configuration	
7.1.2. Digital Input Registers NOT in Tool Suite	54
7.1.3. Input-only Channel Configured as an Digital Input	
7.2. Analog Input - Input-Only Channel	55
7.2.1. Input-Only Analog Input Configuration Settings	55
7.2.2. Tool Suite Serial Base Stack Settings	
7.2.3. Input-only Channel Configured as an Analog Input	
8. Electrically Isolated Channels	
8.1. Digital Output - Isolated Channel	
8.1.1. Isolated Digital Output Configuration	60
8.1.2. Tool Suite Serial Base Stack Settings	61
8.1.3. Digital Output Registers NOT in Tool Suite	61
8.1.4. Isolated Channel Configured as an Digital Output	62
8.2. Digital Input - Isolated Channel	62
8.2.1. Isolated Digital Input Configuration	63
8.2.2. Digital Input Registers NOT in Tool Suite	64
8.2.3. Isolated Channel Configured as an Digital Input	64
9. Quick Reference Modbus Register Map	65
10. Modbus Register Map	
10.1. Holding Coils (Read / Write Commands)	67
10.2. Discrete Inputs (Read-Only Commands)	71
10.3. Input Registers (Read-Only Commands)	72
10.4. Holding Registers (Read / Write Commands)	73
10.5. Modbus Timing	77
10.5.1. Modbus Command Response Time by Device and Command Type	77
10.5.2. Modbus Output Execution Delay Time by Device and I/O Type	
11. Modbus Register Descriptions	79
11.1. Holding Coils (Read / Write) Descriptions	80

LUM0017AB Rev Sep-2019

Page 4 of 103

Copyright © 2019 FreeWave

11.1.1. 0 to 11: DO, Sensor Power ON	80
11.1.2. 24 to 35: Apply Default DO, AO, Sensor Power	80
11.1.3. 48 to 59: Default DO, Sensor Power State	81
11.1.4. 64 to 71: Clear Counter on Read	81
11.1.5. 72 to 83: DI Counter Clear	81
11.1.6. 92 to 95: High–Speed DI Counter on Isolated	81
11.1.7. 96 to 106: DI Counter Falling Edge Increment	82
11.1.8. 112 to 119: AI Signed Integer Result	82
11.1.9. 120 to 127: AI, AO Current, Voltage Mode	82
11.1.10. 136 to 147: DI Counter Latch	83
11.1.11. 152 to 163: Pulse Counter De-Bounce	83
11.2. Discrete Inputs (Read-Only) Descriptions	83
11.2.1. 10000 to 10011: DI State	83
11.2.2. 10024 to 10035: Circuitry Protection Active	83
11.3. Input Registers (Read-Only) Descriptions	83
11.3.1. 30000 to 30016: Al Integer Result	83
11.3.2. 30032 to 30047: AI Result, Floating Point	84
11.3.3. 30064 to 30087: DI Counter	84
11.3.4. 30096: Modbus Request Counter	85
11.3.5. 30112 to 30119: DO Current	85
11.3.6. 30152: Device Temperature	85
11.3.7. 30153: VBATT	85
11.4. Holding Registers (Read / Write) Descriptions	85
11.4.1. 40000 to 40003: AO Command	85
11.4.2. 40008 to 40011: Default AO Command	86
11.4.3. 40016 to 40027: Channel Mode	86
11.4.4. 40040 to 40047: AI Filter Setting	86
11.4.5. 40056 to 40063: Resistor Pull Setting	86
11.4.6. 40072 to 40075: AO Resolution	87
11.4.7. 40080 to 40091: DO Monostable Timeout	87
11.4.8. 40096 to 40103: AI Zero Voltage	87
11.4.9. 40104 to 40111: Al Voltage Span	88
11.4.10. 40112 to 40119: AI, AO Zero Current	88
11.4.11. 40120 to 40127: AI, AO Current Span	89
11.4.12. 40128: Comm Connection	90
11.4.13. 40129: Comm Timeout Latch	90
11.4.14. 40130: Comm Port Baud Rate	90
11.4.15. 40131: Comm Port Parity	90
11.4.16. 40132: Comm Port Stop Bits	91

LUM0017AB Rev Sep-2019

Page 5 of 103

Copyright © 2019 FreeWave

11.4.17. 40133: Modbus Min Transmit Inter-Message Interval	91
11.4.18. 40134: RS-485 Turn-On Delay	91
11.4.19. 40135: RS-485 Turn-Off Delay	91
12. Release Notes	92
13. Expansion Module Dimensions	94
14. Serial Base Dimensions	
Appendix A: Technical Specifications	
General Information	96
Digital Input	
Digital Output	
Analog Input	
Analog Output	
Sensor Power	
Part Number Summary	
Appendix B: I/O Device LEDs	
Expansion Module LEDs	
Serial Base LEDs	
Appendix C: FreeWave Legal Information	

Page 6 of 103

Copyright © 2019 FreeWave

Preface

This document includes this information about the FreeWave I/O Expansion products:

- A basic introduction to the Serial Bases and Expansion Modules that make up the I/O product line.
- Descriptions of each port and LED on Serial Bases and Expansion Modules.
- A description of the parameters required for each channel.
- Steps to setting up and programming a stack of Expansion Modules using Tool Suite.
- Pin out and mechanical drawings.
- Modbus register map details.

Note: For information about the firmware releases that apply to the I/O Expansion products, see Firmware Updates.

Assumptions

- The contents of this manual assumes familiarity with the Modbus protocol.
- For more information about the protocol, see <u>www.modbus.org/specs.php</u>.
- The term "radio" and "transceiver" are used throughout this manual to refer to the described devices.

Additional Information

Note: Use the <u>support.freewave.com</u> website to download the latest documentation for the I/O Expansion.

Registration is required to use this website.

Page 7 of 103

Copyright © 2019 FreeWave

LUM0017AB Rev Sep-2019

Contact FreeWave Technical Support

For up-to-date troubleshooting information, check the **Support** page at <u>www.freewave.com</u>. FreeWave provides technical support Monday through Friday, 8:00 AM to 5:00 PM Mountain Time (GMT -7).

- Call toll-free at 1.866.923.6168.
- In Colorado, call 303.381.9200.
- Contact us through e-mail at <u>support@freewave.com</u>.

Document Styles

This document uses these styles:

- Products and applications appear as: FreeWave.
- Parameter setting text appears as: [Page=radioSettings]
- File names appear as: configuration.cfg.
- File paths appear as: C:\Program Files (x86)\FreeWave Technologies.
- User-entered text appears as: xxxxxxxxx.

Caution: Indicates a situation that **MAY** cause damage to personnel, the radio, data, or network.

Example: Provides example information of the related text.

FREEWAVE Recommends: Identifies FreeWave recommendation information.

Important!: Provides crucial information relevant to the text or procedure.

Note: Emphasis of specific information relevant to the text or procedure.

Provides time saving or informative suggestions about using the product.

Warning! Indicates a situation that **WILL** cause damage to personnel, the radio, data, or network.

LUM0017AB Rev Sep-2019

Page 8 of 103

Copyright © 2019 FreeWave

1. Overview

The I/O Expansion product family provides expandable digital input, digital output, analog input, and analog output capabilities for any device with a Modbus controller. Expandable I/O can be added directly to PLCs, RTUs, and SCADA hosts. I/O Expansion can also integrate into new and existing wireless communication systems such as proprietary, licensed and unlicensed, cellular and satellite radio systems.

The I/O Expansion Module may either be stacked on an applicable I/O base or can serve as expandable I/O modules through a serial connection. Regardless of the configuration, up to 15 modules can be stacked on a single Radio Base or Serial Base, providing up to 192 I/O points, including those on the Base Module.

This example image of an I/O Expansion stack shows an FGR2-IO-IOE as the Base Module.

LUM0017AB Rev Sep-2019

Page 9 of 103

Copyright © 2019 FreeWave

Figure 1: Example of an I/O Expansion stack

1.1. Base Modules and Expansion Modules

The bottom unit in a stack of I/O Expansion Modules is referred to as the Base Module and provides communication to the outside world. The Base Module in a stack can be one of the following:

- Radio Base A Radio Base provides expandable, wireless I/O and can be polled and controlled wirelessly across FreeWave's wireless serial network.
 - The FGR2-IO-IOE radio is the only Radio Base device available.

Note: For information about the FGR2-IO-IOE, see the **LUM0008AG 900 MHz Wire Replacement IO User Manual** available from <u>support.freewave.com</u>. This document does NOT provide reference information for the FGR2-IO-IOE.

- Serial Base A Serial Base provides expandable, wired I/O to any device with RS232, RS422, and RS485 data communication interfaces. Serial Bases come in these models:
 - IOE-4404
 - IOE-4422
 - IOE-4440
- Expansion Modules These can be added to a Radio Base or Serial Base device to expand the number of I/O channels available.

Page 10 of 103

Copyright © 2019 FreeWave

- Expansion Modules on their own do not communicate; they must be connected to a Radio Base or a Serial Base.
- The available expansion modules are.
 - IOEX-4404
 - IOEX-4422
 - IOEX-4440

Note: The X in the model number indicates that the model is an expansion module.

Different isolated channels are available depending on the model number.

Note: For more information see Channel Functions and Specifications (on page 33).

Page 11 of 103

Copyright © 2019 FreeWave

2. Connections

- Expansion Module Connectors (on page 13)
- Serial Base Connectors (on page 15)

Page 12 of 103

Copyright © 2019 FreeWave

2.1. Expansion Module Connectors

These sections describe each connector on an I/O Expansion Module. For information about the I/O channels available on the Expansion Modules, see Channel Functions and Specifications (on page 33).

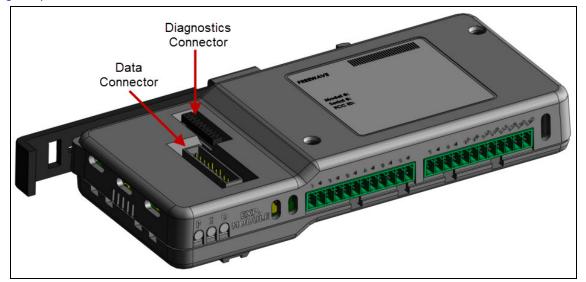


Figure 2: Expansion Module Connectors

2.1.1. Expansion Module Data Connector

The 10-pin data connector passes data directly through to the Serial Base or Radio Base.

Note: For more information, see Serial Base Data Connector (on page 15) or the documentation for the Radio Base for detailed descriptions.

- The data connector on the top Expansion Module can be used to provide power to all devices in the stack.
- Connecting power to the 10-pin data connector on the top module delivers the supply voltage to all modules in the stack.

This pin-out table summarizes the function of each pin:

Expansion Module Data Connector		
Pin	Pin Title	Description
1	VBAT	Power
2	Interrupt	Interrupt used to place the Base into Setup Mode
3	DTR	Data Terminal Ready input of Serial Base
4	Ground	Ground

LUM0017AB Rev Sep-2019

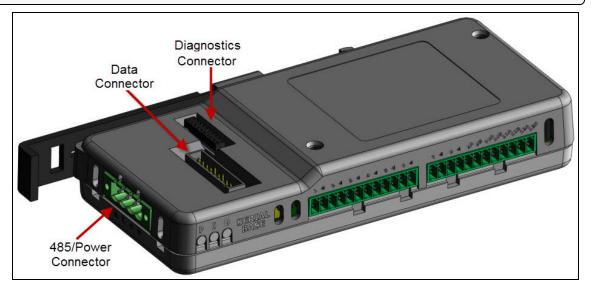
Page 13 of 103

Copyright © 2019 FreeWave

Expansion Module Data Connector		
Pin	Pin Title	Description
5	TXD	Transmit data output of the Serial Base or Radio Base. Y+ data of RS485 output.
6	Ground	Ground
7	RXD	Receive data input of the Serial Base or Radio Base. A+ data of RS485 input.
8	DCD	Carrier Detect output of Radio Base
9	RTS	B- data of RS485 input
10	CTS	Z- data of RS485 input

2.1.2. Expansion Module Diagnostics Connector

The 20-pin diagnostic connector provides board-to-board communication for stacked Expansion Modules, and can be used for programming. It does not serve any diagnostic function.


Page 14 of 103

Copyright © 2019 FreeWave

2.2. Serial Base Connectors

These sections describe each connector on a Serial Base and the pin layout of each.

Note: For information about the I/O channels available on the Serial Base, see Channel Functions and Specifications (on page 33).

Figure 3: Serial Base Connectors

2.2.1. Serial Base Data Connector

This 10-pin connector provides serial communication and power to the Serial Base and supports RS232, RS422, and RS485 serial communication interfaces.

- When Expansion Modules are connected to the Serial Base, power is provided to the Expansion Modules through the power and ground pins on this connector.
- If the Expansion Modules have a Serial Base, power can alternatively be supplied by the serial 485/Power Connector described in Power Connector Serial Base 485 (on page 18).

This pin-out table summarizes the function of each pin in the 10-pin data connector:

Senal Dase Data Connector		
Pin	Pin Title	Description
1	VBAT	Power
2	Interrupt	Interrupt used to place the Base into Setup Mode
3	DTR	Data Terminal Ready
4	Ground	Ground
5	TXD	Transmit Data
6	Ground	Ground

Serial Base Data Connector

LUM0017AB Rev Sep-2019

Page 15 of 103

Copyright © 2019 FreeWave

Serial Base Data Connector		
Pin	Pin Title	Description
7	RXD	Receive Data
8	DCD	Carrier Detect
9	RTS	Request to Send
10	CTS	Clear to Send

Note: Pin 1 is the closest pin to the edge of device.

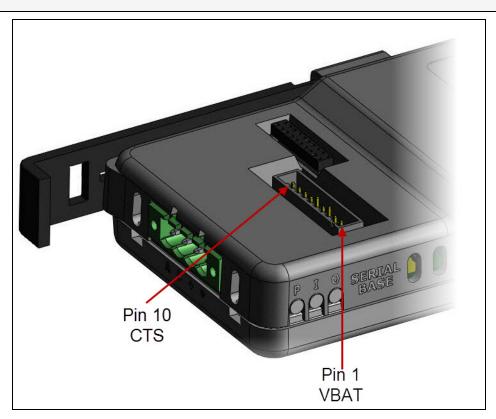


Figure 4: Serial Base Connector

2.2.2. Serial Base Diagnostics Connector

This 20-pin connector provides configuration access to the Serial Base with the **Tool Suite** configuration software without removing either the Data Connector or 485/Power connector.

The 20-pin connector on an attached Expansion Module passes data and settings directly to and from the base module (Serial Base or Radio Base).

LUM0017AB Rev Sep-2019

Page 16 of 103

Copyright © 2019 FreeWave

3. Installation

- Power Connector Serial Base 485 (on page 18)
- Powering Serial Bases and Expansion Modules (on page 19)

Page 17 of 103

Copyright © 2019 FreeWave

3.1. Power Connector - Serial Base 485

This 4-pin connector provides serial communication and power to the Serial Base and any attached Expansion Modules.

- The serial communication interface is limited to two-wire 485 when a shorting connector is placed on the 10-pin connector on top of the device.
- The shorting connector shorts pins 5 (TXD) to 7 (RXD) for Bus + and pins 9 (RTS) and 10 (CTS) for Bus -.

PinDescriptionBBus – for two-wire 485 half duplex with shorting connectorABus + for two-wire 485 half duplex with shorting connectorVBATPowerGroundGround

This table summarizes the function of each pin:

Figure 5 shows the pin orientation:

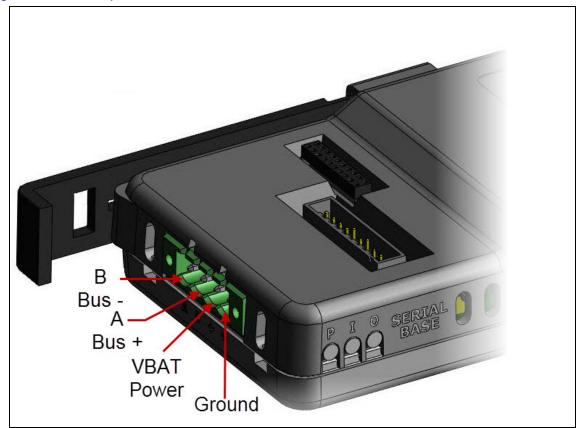


Figure 5: Power Connector - Serial Base 485

LUM0017AB Rev Sep-2019

Page 18 of 103

Copyright © 2019 FreeWave

3.2. Powering Serial Bases and Expansion Modules

Power is shared between all devices in a stack of Expansion Modules. When one device in the stack is powered (Expansion Module, Serial Base, or Radio Base) then all connected devices are powered.

A stack of Expansion Modules can be powered through one of these options:

- Data Connector on the top Expansion Module.
 - See Expansion Module Data Connector (on page 13).
- 485/Power Connector on a Serial Base.
 - See Power Connector Serial Base 485 (on page 18).
- I/O Connector on a Radio Base.
 - See the Wire Replacement I/O User Manual (FreeWave Part Number: LUM0008AC) for details about powering the FGR2-IO-IOE.

Power supply voltage limits for all Serial Base and Expansion Modules are:

ltem	Min	Typical	Мах	Units
Power Supply Voltage	7.5	-	30	V

This table provides the current consumption for a sample Serial Base and Expansion Module configuration:

Channel Configuration		Current Consumption at 12 V (in mA)	
Universal Channels	Input-Only Channels	lsolated Channels	12 V
Disabled	Disabled	Disabled	17.0
DO: Off	Disabled	DO: Off	17.0
DO: On	Disabled	DO: On	18.1
DI	DI	DI	17.0
AO: 0 mA	Disabled	Disabled	18.2
AO: 20 mA	Disabled	Disabled	98.2
AI: Voltage	AI: Voltage	Disabled	17.0
AI: Current	AI:Current	Disabled	25.0

Page 19 of 103

Copyright © 2019 FreeWave

4. Set Up and Programming

Setup and program Serial Bases and Expansion Modules using the Modbus registers or using the configuration tools provided in **Tool Suite**.

In Tool Suite:

- Use the **Configuration** application to define the settings for the most common parameters for both the Serial Bases and their Expansion Modules in the network.
- Use the **Modbus Interface** application to validate and troubleshoot the Modbus configuration of the devices in the stack.

Note: Tool Suite is available for download from support.freewave.com.

- Reading Serial Bases and Expansion Modules in Tool Suite (on page 21)
- Defining Channel Settings in Tool Suite (on page 23)
- Upgrade Serial Bases and Expansion Modules to the Latest Firmware (on page 26)
- Programming Stack Settings in Tool Suite (on page 28)
 - Settings That Apply to the Entire Stack (on page 30)

LUM0017AB Rev Sep-2019

Page 20 of 103

Copyright © 2019 FreeWave

4.1. Reading Serial Bases and Expansion Modules in Tool Suite

Use Tool Suite to

- Connect a stack of I/O devices.
- Read and program all the devices in the stack by connecting to the last Expansion Module in the stack.

Tool Suite reads the device settings starting from the Serial Base or Radio Base and for each Expansion Module in the stack.

To read and program a Serial Base and Expansion Modules using **Tool Suite**, connect the last device in the stack to a computer with **Tool Suite** installed.

Important!: If using IOEX-4422PC or IOEX-4422P (previous versions of the I/O Expansion products), update an IOE-4422or IOEX-4422 model respectively, using the settings read from the older models.

Procedure

1. Connect a serial or diagnostic cable between the computer and the device.

FREEWAVE Recommends: Using a diagnostic cable is recommended. If information is needed to identify the ports, see Expansion Module Data Connector (on page 13) and Expansion Module Diagnostics Connector (on page 14).

2. Connect the power supply to the radio and the power source to turn on the device.

Note: If connected to the device with the serial cable, go to Step 3. If connected to the device with the diagnostic cable, the radio enters Setup mode automatically. Go to Step 4.

3. If using the serial cable (FreeWave Part Number: ASC3610DJ), or are using a board-level device, press the button on the serial cable or short pins 2 & 4 (Brown to Black) on the white 10 pin header connected to the data port.

Note: When in Setup mode, the three LEDs on a Serial Base show Blinking Green $\ominus \ominus \ominus$ continuously.

When a Radio Base is in Setup mode, the three LEDs on the Radio Base show Solid Green
.

4. In Tool Suite, click **Configuration** in the **Applications** pane. (Figure 6) The **Configuration** window opens.

LUM0017AB Rev Sep-2019

Page 21 of 103

Copyright © 2019 FreeWave

This document is subject to change without notice. This document is the property of FreeWave Technologies, Inc. and contains proprietary information owned by FreeWave. This document cannot be reproduced in whole or in part by any means without written permission from FreeWave Technologies, Inc.

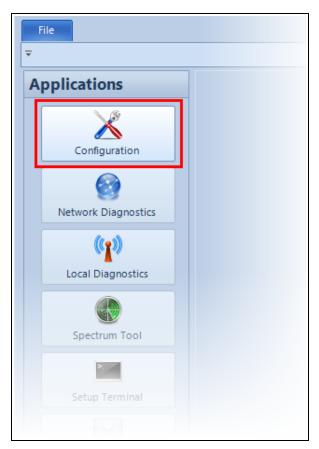
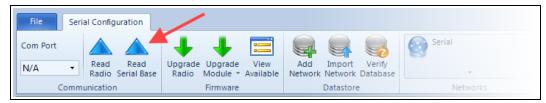



Figure 6: Configuration button

 If using a Serial Base, click Read Serial Base in the Configuration (Figure 7) ribbon to read the current settings for each device in the stack. If using a Radio Base, click Read Radio.

Figure 7: Tool Suite Configuration ribbon

Tool Suite reads the stack starting with the base and reads each Expansion Module starting with the one connected directly to the base.

Page 22 of 103

Copyright © 2019 FreeWave

4.2. Defining Channel Settings in Tool Suite

Each Serial Base and Expansion Module comes with 12 channels.

Note: The channels are described in Channel Functions and Specifications (on page 33).

Use **Tool Suite** to set whether a channel is:

- a Digital Input or Digital Output
- an Analog Input or Analog Output
- a Sensor Power

Important!: If a channel is changed to a different function, (e.g., change a Universal Channel from Digital Input to Analog Input) wait 2 seconds for reliable readings from the channel.

Procedure

1. In Tool Suite, click **Configuration** in the **Applications** pane. (Figure 8) The **Configuration** window opens.



Figure 8: Configuration button

2. In the **Networks** section of the **Configuration** ribbon, select the network the I/O devices reside in.

part by any means without written permission from FreeWave Technologies, Inc.

Note: For information abut adding networks, see the Tool Suite User Manual.

- 3. Create a template to load to a device at a later time:
 - a. Click Template Devices at the bottom of the Device tree.
 - Right-click anywhere in the **Device** tree and select Add > Serial Base Template to add a Serial Base.
 - c. Name the device.
 - d. Select the module type and click Add.

Note: When programming a device directly, see the Reading Serial Bases and Expansion Modules in Tool Suite (on page 21) to load the current device settings. The device stack is shown in the **Template Devices** tab.

- 4. Add an Expansion Module:
 - a. Add a Serial Base.
 - b. Right-click the Serial Base in the **Device** tree and select **Add Expansion Module**.
 - c. Name the device.
 - d. Select the module type and click Add.
- 5. In the **Device** tree, select the device to configure.

The current settings appear in the right pane and are grouped by channel type.

Device Information (0) Universal Channels (1) Input-Only Channels (2) Isolated Channels (4) Stack Settings

Figure 9: (0) Universal Channels in the IO Tool Suite tabs

Note: If setting a Serial Base, set the settings that apply to the entire stack. For more information, see Settings That Apply to the Entire Stack (on page 30).

- 6. Click the tab that contains the channel to configure:
 - Universal Channels Channels 1 to 4
 - Input-Only Channels Channels 5 to 8
 - Isolated Channels Channels 9 to 12
- 7. In the **I/O Mode** field for the channel to configure, select the channel function (e.g.,Digital Output).
 - If not using a channel on a device, select **Disabled** to indicate that the channel is not in use.
 - The other fields that apply to the selected channel function appear when the channel function is selected.

Note: For information about each parameter setting, see the descriptions of each channel type in Channel Functions and Specifications (on page 33).

• Changes are saved to the Tool Suite database as they are made.

Page 24 of 103

Copyright © 2019 FreeWave

- 8. Send the configurations to a device by:
 - a. Send only the changed parameters to a single device in the stack:

Important!: This option is only available if **Read Serial Base** is selected and are NOT sending parameter settings from a template to the device.

- i. Select the device in the Configuration application.
- ii. Click **Quick** in the **Device Title** ribbon.
- b. Send all the settings for all parameters:
 - i. Select the device in the Configuration application.
 - ii. Click **All** in the **Device Title** ribbon.
- c. Set a device back to its factory default settings:
 - i. Select the device in the **Configuration** application.
 - ii. Click **Default** in the **Device Title** ribbon.
- d. Send changes to all the devices in a stack at one time:
 - i. Right-click the base in the Devices tree in the Configuration application.
 - ii. Select Program Stack.

Page 25 of 103

Copyright © 2019 FreeWave

4.3. Upgrade Serial Bases and Expansion Modules to the Latest Firmware

If **Tool Suite** is connected to a device, and a new version of firmware is available for that model, an indication appears in the **Configuration** application's **Device Information** tab.

Procedure

- 1. Verify the device is connected to **Tool Suite** and in **Setup** mode.
- 2. In Tool Suite, click **Configuration** in the **Applications** pane. (Figure 10) The **Configuration** window opens.

Figure 10: Configuration button

3. Click **Read Serial Base** to read the latest settings and configurations from the Serial Base and all the Expansion Modules in the stack. (Figure 11)

Figure 11: Tool Suite Configuration ribbon

LUM0017AB Rev Sep-2019

Page 26 of 103

Copyright © 2019 FreeWave

- 4. In the **Devices** tree, select the device to upgrade.
- 5. Click Upgrade Module in the Firmware section of the Configuration ribbon.
- 6. Click **Yes** at the prompt to continue.

Tool Suite identifies the firmware version loaded on the connected device and shows the latest version of firmware available for that model.

7. Click **Yes** to continue with the upgrade.

The system shows the progress of the firmware upgrade in **Tool Suite**. When the upgrade is completed, a message appears that the firmware upgrade was successful.

Note: While the device's firmware is being updated, each LED displays solid red = = .

Warning! Do NOT disconnect the stack from **Tool Suite** or from power while the firmware is updating. If the connection or power is lost during the upgrade, the device could become inoperable.

Page 27 of 103

Copyright © 2019 FreeWave

4.4. Programming Stack Settings in Tool Suite

The Serial Base contains settings, such as power settings and stack-wide Modbus settings that you program on the Serial Base device. The Serial Base then sends those settings to each Expansion Module in the stack. You can only set these settings on the Serial Base.

Procedure

1. In Tool Suite, click **Configuration** in the **Applications** pane. (Figure 12) The **Configuration** window opens.

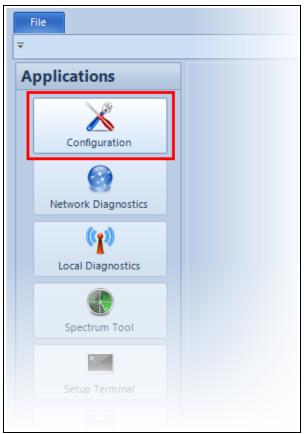


Figure 12: Configuration button

2. In the **Networks** section of the **Configuration** ribbon, select the network the I/O devices reside in.

Note: For information abut adding networks, see the Tool Suite User Manual.

- 3. Create a template to load to a device at a later time:
 - a. Click Template Devices at the bottom of the Device tree.
 - Right-click anywhere in the **Device** tree and select Add > Serial Base Template to add a Serial Base.
 - c. Name the device.
 - d. Select the module type and click Add.

Page 28 of 103

Copyright © 2019 FreeWave

Note: When programming a device directly, see the Reading Serial Bases and Expansion Modules in Tool Suite (on page 21) to load the current device settings. The device stack is shown in the **Template Devices** tab.

- 4. Add an Expansion Module:
 - a. Add a Serial Base.
 - b. Right-click the Serial Base in the **Device** tree and select **Add Expansion Module**.
 - c. Name the device.
 - d. Select the module type and click **Add**.
- 5. In the **Device** tree, select the device to configure.

The current settings appear in the right pane and are grouped by channel type.

Device Information (0) Universal Channels (1) Input-Only Channels (2) Isolated Channels (4) Stack Settings

Figure 13: (0) Universal Channels in the IO Tool Suite tabs

Note: If setting a Serial Base, set the settings that apply to the entire stack. For more information, see Settings That Apply to the Entire Stack (on page 30).

- 6. Click **Stack Settings** tab.
- 7. Send the configurations to a device by:
 - a. Send only the changed parameters to a single device in the stack:

Important!: This option is only available if **Read Serial Base** is selected and are NOT sending parameter settings from a template to the device.

- i. Select the device in the **Configuration** application.
- ii. Click **Quick** in the **Device Title** ribbon.
- b. Send all the settings for all parameters:
 - i. Select the device in the **Configuration** application.
 - ii. Click All in the Device Title ribbon.
- c. Set a device back to its factory default settings
 - i. Select the device in the **Configuration** application.
 - ii. Click **Default** in the **Device Title** ribbon.

LUM0017AB Rev Sep-2019

Page 29 of 103

Copyright © 2019 FreeWave

4.5. Settings That Apply to the Entire Stack

These parameters are set on the Serial Base and apply to the Serial Base and to each Expansion Module in the stack attached to the serial base. The parameters that can also be set through the Modbus interface include the Modbus register in the description.

- Serial Port Communication between the Computer and Stack (on page 30)
- Communication Timeout Settings and Required Stack Power (on page 31)
- Communication and Message Characteristics of Modbus (on page 31)

4.5.1. Serial Port Communication between the Computer and Stack

Set these parameters to establish the serial port communication settings between the computer and the stack.

Field	Description	
Serial Protocol	The protocol the serial port uses:	
	• RS232	
	• RS422	
	• RS485	
	Modbus Register: 40129 Comm Connection	
Port Speed	This is the baud rate between the computer and the data port.	
	The default baud rate is 19200.	
	Modbus Register: 40131 Comm Port Baud Rate	
Parity	This is the data parity of the network.	
	The default is None.	
	Modbus Register: 40132 Comm Port Parity	
Stop Bits	This is the amount of time the radio stops and ways at the end of each character to wait for the next start bit.	
	Note: There currently is only one selection, 1-bit.	
	Modbus Register: 40133 Comm Port Stop Bits	

Serial Port Communication between the Computer and Stack

Page 30 of 103

Copyright © 2019 FreeWave

4.5.2. Communication Timeout Settings and Required Stack Power

Set these parameters to establish the communication timeout settings and the amount of power the stack requires.

Communication Timeout Settings and Require Stack Power		
Field	Description	
Default Delay	This is the time the radio waits to receive a Modbus command or query before a communication timeout occurs.	
	 If a communication timeout occurs, the default state for the module's channels are enabled. 	
	 Default states are defined in the Default AO Command and Default DO, Sensor Power State Modbus registers. 	
	Note: If these registers are not set, the factory default settings are used.	
Power Mode	This allows the Serial Base and all the Expansion Modules in the stack to use less power.	
	The options are Regular and Low.	

4.5.3. Communication and Message Characteristics of Modbus

Set these parameters to establish the communication and message characteristics of the Modbus interface.

Field	Description								
Modbus Address	This setting determines the range of acceptable Modbus IDs for the device.								
Mode	• If set to 8-Bit, the Modbus ID can be between 1 and 246.								
	• If set to 16-Bit, the Modbus ID can be between 1 and 65535.								
Modbus ID	This is the Modbus identification number for the device.								
	Note : The acceptable range of IDs is determined by the Modbus Address Mode .								
Modbus Message	This setting determines the time in milliseconds								
Interval	Modbus Register: Modbus Min Transmit Inter-Message Interval								
AI Integer Result	This setting determines the alignment of the AI Integer Result register.								
Justification	The options include:								
	• Left								
	Right								

Communication and Message Characteristics of Modbus

LUM0017AB Rev Sep-2019

Page 31 of 103

Copyright © 2019 FreeWave

Communication and Message Characteristics of Modbus										
Field	Description									
Floating Point Word Order	This setting determines the position of the Most Significant Word (MSW) and Lease Significant Word (LSW) in the AI Floating Point Result register for all devices in the stack.									
	Regular word order places the:									
	MSW at the lower address.									
	LSW at the higher address.									
	Example : MSW = 30032, LSW = 30033. Inverted word order places the LSW at the lower address and the MSW at the higher address.									
Long Integer Word Order	This setting determines the position of the MSW and LSW in the AI Result , Integer registers for all devices in the stack.									
	Regular word order places the:									
	MSW at the lower address.									
	LSW at the higher address.									
	Example : MSW = 30000, LSW = 30001. Inverted word order places the LSW at the lower address and the MSW at the higher address.									

Communication and Message Characteristics of Modbus

Page 32 of 103

Copyright © 2019 FreeWave

5. Channel Functions and Specifications

All I/O Expansion devices have 12 I/O channels. All models feature four (4):

- Universal Configurable Channels (on page 36)
- Input-Only Channels (on page 51)
- Electrically Isolated Channels (on page 59)

The different models have these I/O configuration:

Model	I/O Configuration
IOE-4440 and IOEX-4440 Channels (on page 34)	All four isolated channels are digital inputs.
IOE-4422 and IOEX-4422 Channels (on page 34)	Two isolated channels are digital inputs and two are digital outputs.
IOE-4404 and IOEX-4404 Channels (on page 34)	All four isolated channels are digital outputs.

LUM0017AB Rev Sep-2019

Page 33 of 103

Copyright © 2019 FreeWave

5.1. IOE-4440 and IOEX-4440 Channels

These channels are available on the IOE-4440 and IOEX-4400 Channels.

Note: Any channel column in this table with a dot (•) is available in this model.

IOE-4440 and IOEX-4440 Channels

		Univ	ersal	Char	nnels	Inpu	t-Only	Isolated Channels					
4440 Channels	Number	1	2	3	4	5	6	7	8	9	10	11	12
Digital Input	12	•	•	•	•	•	•	•	•	•	•	•	•
Digital Output	4	•	•	•	•								
Analog Input	8	•	•	•	•	•	•	•	•				
Analog Output	4	•	•	•	•								
Sensor Power	4	•	•	•	•								

5.2. IOE-4422 and IOEX-4422 Channels

These channels are available on the IOE-4422 and IOEX-4422 Channels. Any channel column with a dot (\bullet) in the table below is available in this model.

IOE-4422 and IOEX-4422 Channels

		Univ	ersal	Char	nnels	Inpu	t-Only	Isolated Channels					
4422 Channels	Number	1	2	3	4	5	6	7	8	9	10	11	12
Digital Input	10	•	•	•	•	•	•	•	•	•	•		
Digital Output	6	•	•	•	•							•	•
Analog Input	8	•	•	•	•	•	•	•	•				
Analog Output	4	•	•	•	•								
Sensor Power	4	•	•	•	•								

5.3. IOE-4404 and IOEX-4404 Channels

These channels are available on the IOE-4404 and IOEX-4404 Channels. Any channel column with a dot (\bullet) in the table below is available in this model.

IOE-4404 and IOEX-4404 Channels													
		Univ	ersal	Char	nnels	Input	Isolated Channels						
4404 Channels	Number	1	2	3	4	5	6	7	8	9	10	11	12
Digital Input	8	•	•	•	•	•	•	•	•				
Digital Output	8	•	•	•	•					•	•	•	•
Analog Input	8	•	•	•	•	•	•	•	•				

LUM0017AB Rev Sep-2019

Page 34 of 103

Copyright © 2019 FreeWave

IOE-4404 and IOEX-4404 Channels													
		Univ	ersal	Char	nnels	Input	t-Only	Isolated Channels					
4404 Channels	Number	1	2	3	4	5	6	7	8	9	10	11	12
Analog Output	4	•	•	•	•								
Sensor Power	4	•	•	•	•								

The I/O channels are numbered left to right and each as a channel port and a signal ground port:

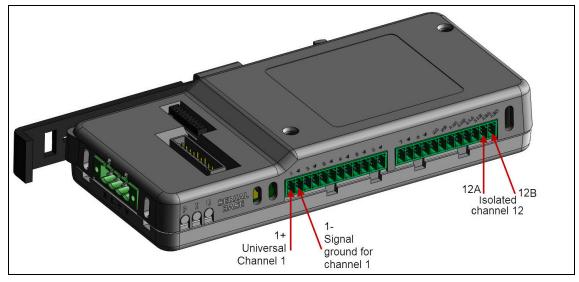


Figure 14: IO Serial Base: IO Channel Connectors

Page 35 of 103

Copyright © 2019 FreeWave

6. Universal Configurable Channels

Channels 1, 2, 3, and 4 on all Serial Base and Expansion Modules are Universal Channels. Universal Channels can be configured as these channels:

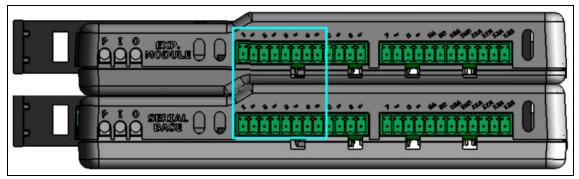


Figure 15: IO Universal Channels

These sections describe the features and characteristics of each universal channel configuration.

- Digital Input Universal Channel (on page 37)
- Digital Output Universal Channel (on page 39)
- Analog Input Universal Channel (on page 42)
- Analog Output Universal Channel (on page 47)
- Sensor Power Universal Channel (on page 49)

LUM0017AB Rev Sep-2019

Page 36 of 103

Copyright © 2019 FreeWave

6.1. Digital Input - Universal Channel

A Universal Digital Input provides data to these registers:

- 10000 to 10011: DI State The present state of the channel.
- 30064 to 30087: DI Counter The number of pulse edges seen on the channel.

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

6.1.1. Universal Digital Input Configuration

Use the information in this table to configure a Digital Input.

Universal Digital Input Configuration			
Tool Suite Field	Equivalent Register	Description	
Counter Edge	96 to 106: DI Counter Falling Edge Increment	 This setting defines the pulse edge the DI Counter registers increments on. Select Falling Edge to increment the DI Counter register when the input goes from 1 to 0. In the Modbus register, this is (1) ON. Select Rising Edge to increment the DI Counter register when input goes from 0 to 1. In the Modbus register, this is (0) OFF. 	
Resistor Pull	40056 to 40063: Resistor Pull Setting	 Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs. In the Modbus register, this is 1. Select Pull-Up to connect a pull-up resistor for closed-contact-to-ground inputs. In the Modbus register, this is 2. Select None to disable both resistors. In the Modbus register, this is 0. 	

LUM0017AB Rev Sep-2019

Page 37 of 103

Copyright © 2019 FreeWave

Universal Digital Input Configuration			
Tool Suite Field	Equivalent Register	Description	
Counter Debounce	152 to 163: Pulse Counter Debounce	 This setting enables the system to take multiple samples before determining that an edge is real and not noise on the channel. Digital Inputs support: pulse counting for input signals up to 100 Hz. debounced pulse counting for input signals to 10 Hz. Note: High-speed counting is not de-bounced and inputs must not go below GND. 	

6.1.2. Digital Input Registers NOT in Tool Suite

Set additional functionality for a **Digital Input** using these registers that do not have an equivalent field in **Tool Suite**.

Register	Description		
72 to 83:	Clears the Digital Input counter to 0.		
DI Counter Clear	Critical counting ensures that each pulse is reported by only clearing pulses that have been read.		
	Note : For more information, see the DI Counter Clear the register description 72 to 83: DI Counter Clear (on page 81).		
136 to 147:	Scans for the input change at a much slower speed than the duration of the pulse.		
DI Counter Latch	Note : For more information, see the DI Counter Latch the register description 136 to 147: DI Counter Latch (on page 83).		

Digital Input Registers NOT in Tool Suite

6.1.3. Universal Channel Configured as a Digital Input

A Universal Channel configured as a Digital Input has these specifications:

Universal Channel Configured as an Digital Input				
ltem	Min	Typical	Мах	Units
Input Low (OFF) voltage	0	-	2.5	V
Input High (ON) voltage	3.0	-	Actual Power Supply Voltage	V

LUM0017AB Rev Sep-2019

Page 38 of 103

Copyright © 2019 FreeWave

Universal Channel Configured as an Digital Input				
ltem	Min	Typical	Мах	Units
Pulse counting frequency	-	-	100	Hz
De-bounced pulse counting frequency	-	-	10	Hz
Pulse width	4	-	-	ms
De-bounced pulse width	40	-	-	ms
Pull-up resistance	-	1	-	kΩ
Pull-up voltage (measured externally)	-	3.0	-	V
Pull-down resistance to ground	-	10	-	kΩ

6.2. Digital Output - Universal Channel

A universal channel configured as a Digital Output has these characteristics:

- Solid-state digital outputs with reverse-blocking **Schottky** diodes are rated at 1 A across the complete operating temperature range.
- Output voltage range up to 30 V, or device supply voltage, whichever is less.
- Circuitry protection.
 - If an overload occurs, the channel turns off automatically.
 - For more information, see the register description at 10024 to 10035: Circuitry Protection Active (on page 83).
- Each channel has a ground pin for current return that must be used for large currents (over 0.1 A).
- Reports approximate amount of current flowing to ground.
- Configurable for normally open or normally closed.

Note: A Digital Output reports its current in milliAmps to the 30112 to 30119: DO Current register.

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

LUM0017AB Rev Sep-2019

Page 39 of 103

Copyright © 2019 FreeWave

6.2.1. Universal Digital Output Configuration

Use the information in this table to configure a Digital Output.

Universal Digital Output Configuration			
Tool Suite Field	Equivalent Register	Description	
Apply Default Output	24 to 35:	If set to Yes :	
	Apply Default DO, AO, Sensor Power	 when a device powers up or a communication timeout has occurred, the channel uses the values set in the Default DO, Sensor Power State register. 	
		 set the Default Output field or the Default DO, Sensor Power State register. 	
		 In the Modbus register, this is (1) ON. 	
		If set to No :	
		 When a device powers up or a communication timeout has occurred, the channel remains off. 	
		• In the Modbus register, this is (0) OFF.	
Default Output	48 to 59: Default DO, Sensor Power State	If apply defaults on power up or after a communication timeout is selected, use this setting to set the default state of the channel.	
		Note: For more information, see the Default DO , Sensor Power State register description 48 to 59: Default DO, Sensor Power State (on page 81).	
Monostable Time (msec)	40080 to 40091: DO Monostable Timeout	• Enter the amount of time in milliseconds from 1 to 60000 (1 minute) after which the Digital Output channel goes to the state defined in the Default DO , Sensor Power State register.	
		• When set to 0 milliseconds, the channel is bi-stable and maintains its most recent state until it receives a command to change its state.	

LUM0017AB Rev Sep-2019

Page 40 of 103

Copyright © 2019 FreeWave

6.2.2. Tool Suite Serial Base Stack Settings

Set these parameters on the Stack Settings tab in Tool Suite for the Serial Base in the stack.

I ool Suite Ser	ial Base Stack Settings
Field	Description
Default Delay (sec)	Enter the amount of time in seconds that an Expansion Module or Serial Base waits for a Modbus command or query before a communication timeout occurs. When a communication timeout occurs, the action defined in the Apply Default DO, AO, Sensor Power is taken.
	Note : For more information, see the register description in 24 to 35: Apply Default DO, AO, Sensor Power (on page 80).

Tool Suite Serial Base Stack Settings

6.2.3. Digital Output Registers NOT in Tool Suite

Set additional functionality for a **Digital Output** using these registers that do not have an equivalent field in **Tool Suite**.

Digital Output Registers NOT in Tool Suite		
Register	Description	
0 to 11:	 Set to (1) ON to sink current to ground when the transistor powers up. 	
DO, Sensor Power On	 When set to (0) OFF, the transistor turns off and the output remains floating, unless the Resistor Pull Setting register is set to 1 or 2. 	
40056 to 40063:	Select Pull-Down to connect a pull-down resistor to ground for use with	
Resistor Pull	closed-contact-to-voltage inputs.	
Setting	In the Modbus register, this is 1.	
	 Select Pull-Up to connect a pull-up resistor for closed-contact-to-ground inputs. 	
	In the Modbus register, this is 2.	
	Select None to disable both resistors.	
	In the Modbus register, this is 0.	

LUM0017AB Rev Sep-2019

Page 41 of 103

Copyright © 2019 FreeWave

6.2.4. Universal Channel Configured as an Digital Output

A universal channel configured as a Digital Output has these specifications.

Universal Channel Configured as an Digital Output				
ltem	Min	Typical	Max	Units
Output ON sinking current	-	-	1	А
Output ON resistance to ground *	0	0.1	0.2	Ω
Output ON circuitry protection limit	-	1.25	-	A
Output OFF resistance to ground	234	-	-	kΩ
External load voltage connection	0	-	V _{bat}	V
Pull-up resistance	-	1	-	kΩ
Pull-up voltage (measured externally)	-	3.0	-	V
Pull-down resistance to ground	-	10	-	kΩ

Universal Channel Configured as an Digital Output

*Dynamic resistance; a reverse-blocking **Shottky** diode is in series.

6.3. Analog Input - Universal Channel

A universal channel configured as an Analog Input returns data to the **30000 to 30016: AI Integer Result** register and **30032 to 30047: AI Floating Point Result** register associated with the channel. The channel also has circuitry protection. If an overload occurs, the channel turns off automatically. For more information, see the description for register 10024 to 10035: Circuitry Protection Active (on page 83).

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

Page 42 of 103

Copyright © 2019 FreeWave

6.3.1. Universal Analog Input Configuration

Use the information in the following table to configure an Analog Input.

Universal Analog Input Configuration			
Tool Suite Field	Equivalent Register	Description	
Current Span	40104 to 40111:	Sets the high end, or range, of the Analog Input or Output.	
(μΑ) Voltage Span (mV)	Al Voltage Span 40120 to 40127: Al, AO Current Span	 Note: See the register description 40120 to 40127: AI, AO Current Span (on page 89) for setting recommendations. For 16-bit readings, set between 0 and 65535. For 20-bit readings, set between 0 and 1,048,575. 	
Filtering / Averaging	40040 to 40027: AI Filter Setting	This sets a moving average, in seconds, for the AI Integer Result and AI Floating Point Result registers.	
		Use this setting to help filter out signal noise.	
		Select from these settings:	
		• 0 - Disabled	
		• 1 - 10 seconds (0.1 Hz)	
		• 2 - 25 seconds (0.04 Hz)	
		• 3 - 50 seconds (0.02 Hz)	
		• 4 - 100 seconds (0.01 Hz)	
		• 5 - 250 seconds (0.004 Hz)	
		FREEWAVE Recommends : Leave this setting at 0 .	
Resistor Pull	40056 to 40063: Resistor Pull	 Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs. 	
	Setting	• In the Modbus register, this is 1.	
		 Select Pull-Up to connect a pull-up resistor for closed- contact-to-ground inputs. 	
		• In the Modbus register, this is 2.	
		Select None to disable both resistors.	
		• In the Modbus register, this is 0.	

Universal Analog Input Configuration

LUM0017AB Rev Sep-2019

Page 43 of 103

Copyright © 2019 FreeWave

Universal Analog Input Configuration			
Tool Suite Field	Equivalent Register	Description	
Integer Type	112 to 119: Al Signed	This parameter sets the integer type to a signed or unsigned integer in the AI Integer Result register.	
	Integer Result	 A signed integer is required to report negative input voltages if the RTU/PLC supports signed integers only. 	
		 Setting to Signed results in a signed integer. 	
		 In the Modbus register, this is (1) ON. 	
		 Setting to Unsigned results in an unsigned integer returned in the AI Integer Result register. 	
		 In the Modbus register, this is (0) OFF. 	
		Setting this register to:	
		 0 results in an unsigned integer returned in the AI Integer Result register. 	
		Setting to 1 results in a signed integer.	
Voltage Or Current	120 to 127: Al Current Mode	Select Voltage to return information in Volts (V). In the Modbus register, this is (1) ON.	
		Select Current to return current information in milliAmps (mA). In the Modbus register, this is (0) OFF.	
		 20-bit analog-to-digital converter yields 0.10% reading accuracy across entire operating temperature for voltage and current input signals. 	
		 Voltage range supports 1 to 5 V and 0 to 10 V analog signals. 	
		Complete voltage range is -2.5 to 12.5 V.	
		Current range supports 4 to 20 mA analog signals.	
		Complete current range is 0 to 25 mA.	
Zero Current (mA)	40112 to 40119: AI, AO Zero	This setting calibrates the low end of the Analog Input or Output to zero.	
Zero Voltage (mV)	Current 40096 to 40103:	Set between 0 to 10000 mV or mA depending on the setting in the Voltage Or Current field.	
· /	AI Zero Voltage		

LUM0017AB Rev Sep-2019

Page 44 of 103

Copyright © 2019 FreeWave

6.3.2. Tool Suite Serial Base Stack Settings

Set these parameters on the Stack Settings tab in Tool Suite for the Serial Base in the stack.

Tool Suite	Serial Base Stack Settings
Field	Description
Floating Point Word Order	This setting determines the position of the Most Significant Word (MSW) and Lease Significant Word (LSW) in the AI Floating Point Result register for all devices in the stack.
	Regular word order places the:
	MSW at the lower address.
	LSW at the higher address.
	Example : MSW = 30032, LSW = 30033. Inverted word order places the LSW at the lower address and the MSW at the higher address.
Al Integer	This setting determines the alignment of the AI Integer Result register.
Results Justification	The options include:
Justineation	• Left
	Right

Tool Suite Serial Base Stack Settings

6.3.3. Universal Channel Configured as an Analog Input

A universal channel configured as an Analog Input has these specifications:

Universal Channel Configured as an Analog Input				
ltem	Min	Typical	Max	Units
Voltage Input				
Analog input voltage	-2.5	-	lesser of 30 V or V _{bat}	V
Full-scale input voltage*	-	13.75	-	V
Resolution*	-	20	-	Bits
Scaling factor (all 20 bits)*	-	9.54	-	µV/LSB
Scaling factor (upper 16 bits)*	-	153	-	µV/LSB
Accuracy error (0 to 5 V input)	0	-	Greater of 1 mV or 0.10% of input	mA
Current Input				
Analog input current	0	-	25	mA

LUM0017AB Rev Sep-2019

Page 45 of 103

Copyright © 2019 FreeWave

Universal Channel Configured as an Analog Input				
ltem	Min	Typical	Max	Units
Circuitry protection limit	-	25	-	mA
Internal sense resistor	249	250	251	Ω
Full-scale input current range*	-	40	-	mA
Resolution	-	20	-	Bits
Scaling factor (all 20 bits)*	-	38.1	-	nA/LSB
Scaling factor (upper 16 bits)*	-	610	-	na/LSB
Accuracy error (4 to 20 mA input)	0	-	Greater of 4 μ A or 0.10% of input	

*These settings apply only when zero and span registers are set to 0 (default)

LUM0017AB Rev Sep-2019

Page 46 of 103

Copyright © 2019 FreeWave

6.4. Analog Output - Universal Channel

Ť

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

6.4.1. Universal Analog Output Configuration

Use the information in this table to configure an Analog Output.

Tool Suite Field	Equivalent Register	Description
Default Output	40008 to 40011: Default AO Command	If apply defaults on power up or after a communication timeout is selected, use this setting to set the default state of the channel.
		Note: For more information, see the Default DO , Sensor Power State register description 48 to 59: Default DO, Sensor Power State (on page 81).
Apply Default Output	24 to 35:	If set to Yes :
	Apply Default DO, AO, Sensor Power	 When a device powers up or a communication timeout has occurred, the channel uses the values set in the AO Command register.
		• In the Modbus register, this is (1) ON.
		 Set the Default Output field or the Default AO Command register.
		If set to No :
		 When a device powers up or a communication timeout has occurred, the factory defaults are applied to the channel.
		• In the Modbus register, this is (0) OFF.
Offset / Zero	40112 to 40119: AI, AO Zero	This setting calibrates the low end of the Analog Input or Output to zero.
	Current	Set between 0 to 10000 mV or mA depending on the setting in the Voltage Or Current field.

Universal Analog Output Configuration

LUM0017AB Rev Sep-2019

Page 47 of 103

Copyright © 2019 FreeWave

Universal Analog Output Configuration			
Tool Suite Field	Equivalent Register	Description	
Resistor Pull	40056 to 40063: Resistor Pull	 Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs. 	
	Setting	• In the Modbus register, this is 1.	
		 Select Pull-Up to connect a pull-up resistor for closed-contact-to-ground inputs. 	
		• In the Modbus register, this is 2.	
		Select None to disable both resistors.	
		• In the Modbus register, this is 0.	
Scaling	40072 to 40075:	This sets the resolution of the AO Command register.	
	AO Resolution	 The current range supports 4 to 20 mA analog signals. 	
		• The complete current range is 0 to 25 mA.	
		Set to one of these options:	
		microAmps (1 microAmp per bit)	
		12-bit resolution	
		14- bit resolution	
		• 15-bit resolution.	
		 This is the recommended setting PLCs or RTUs that only support 16-bit signed integers. 	
		16-bit resolution	
Span	40112 to 40119: AI, AO Zero Current 40120 to 40127: AI, AO Current Span	Sets the high end, or range, of the Analog Input or Output.	
		Note : See the register description 40120 to 40127: AI, AO Current Span (on page 89) for setting recommendations.	
		• For 16-bit readings, set between 0 and 65535.	
		• For 20-bit readings, set between 0 and 1,048,575.	

Universal Analog Output Configuration

LUM0017AB Rev Sep-2019

Page 48 of 103

Copyright © 2019 FreeWave

6.4.2. Universal Channel Configured as an Analog Output

A universal channel configured as a Analog Output has these specifications:

Universal Channel Configured as an Analog Output				
ltem	Min	Typical	Max	Units
Analog output current	0	-	22	mA
Full-scale output current*	-	25	-	mA
Resolution	-	25	-	Bits
Scaling factor*	-	1	-	µA/LSB
Voltage on output pin	-	-	V _{BAT} -0.5	V
Accuracy error (at 20 mA output)	-0.25	-	0.25	%

Universal Channel Configured as an Analog Output

*These settings apply only when the zero and range registers are set to 0 (default).

6.5. Sensor Power - Universal Channel

A universal channel configured as a Sensor Power channel provides:

- Power for sensors and transmitters up to 50 mA.
- Voltage provided to the transmitter is roughly equal to the power provided to the Serial Base or Expansion Module, minus approximately 0.5 V, minus load current, multiplied by 10 ohms.
- Circuitry protection.
 - If an overload occurs, the channel turns off automatically.
 - For more information, see the register description for 10024 to 10035: Circuitry Protection Active (on page 83).

Ŵ

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

Page 49 of 103

Copyright © 2019 FreeWave

6.5.1. Universal Sensor Power Channel Configuration

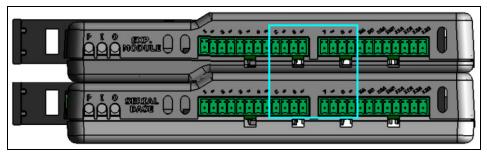
Use the information in this table to configure a Sensor Power channel.

Universal Sensor Power Channel Configuration		
Tool Suite Field	Equivalent Register	Description
Default Output	48 to 59: Default DO, Sensor Power State	If apply defaults on power up or after a communication timeout is selected, use this setting to set the default state of the channel. Note: For more information, see the Default DO , Sensor Power State register description 48 to 59: Default DO, Sensor Power State (on page 81).
Apply Default Output	24 to 35: Apply Default DO, AO, Sensor Power	 If set to Yes: When a device powers up or a communication timeout has occurred, the channel uses the values set in the DO, Sensor Power On register. In the Modbus register, this is (1) ON. Set the Default Output field or the Default DO, Sensor Power register. If set to No: When a device powers up or a communication timeout has occurred, the factory defaults are applied to the channel. In the Modbus register, this is (0) OFF.

Universal Sensor Power Channel Configuration

6.5.2. Universal Channel Configured a Sensor Power

A universal channel configured as Sensor Power has these characteristics.


Universal Channel Configured a Sensor Power				
ltem	Min	Typical	Мах	Units
Voltage output	V _{bat} - 1	V _{bat} - 0.5	V _{bat}	V
Current output	0	-	50	mA
Circuitry protection limit	-	52	-	mA

LUM0017AB Rev Sep-2019

Page 50 of 103

7. Input-Only Channels

- Channels 5, 6, 7, and 8 on all Serial Bases and Expansion Modules are input-only channels.
- Input-only channels can be configured as Digital Input and Analog Input.

Figure 16: IO Input-only Channels

These sections describe the features and characteristics of each input-only channel configuration.

- Digital Input Input-Only Channel (on page 52)
- Analog Input Input-Only Channel (on page 55)

LUM0017AB Rev Sep-2019

Page 51 of 103

Copyright © 2019 FreeWave

7.1. Digital Input - Input-Only Channel

An input-only channel configured as a Digital Input provides data to these registers:

- 10000 to 10011: DI State The present state of the channel.
- 30064 to 30087: DI Counter The number of pulse edges seen on the channel.

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

7.1.1. Input-Only Channel Digital Input Configuration

Caution: For accurate counting at high speed, the voltage at the Digital Input pin must NOT drop below 0 V.

Proper grounding techniques and short wiring connections are necessary to ensure accurate counting for high speed signals.

If the voltage at the Digital Input pin drops below 0 V, there may be false edges detected and the Digital Input pulse count can be higher than expected.

Use the information in this table to configure an input-only channel Digital Input.

input only channel Digital input configuration			
Tool Suite Field	Register	Description	
Clear Counter on Read		This setting determines whether the Digital Input Counter is reset to zero (0) when read.	
		 Select Enabled to set the channel to reset to zero (0) when read. 	
		They will NOT erase automatically.	
		Select Disabled to set the channel to accrue counts.	
Counter Debounce		This setting enables the system to take multiple samples before determining that an edge is real and not noise on the channel. Digital Inputs support:	
		 pulse counting for input signals up to 100 Hz. 	
		debounced pulse counting for input signals to 10 Hz.	
	Note : High-speed counting is not de-bounced and inputs must not go below GND.		

Input-Only Channel Digital Input Configuration

LUM0017AB Rev Sep-2019

Page 52 of 103

Copyright © 2019 FreeWave

Tool Suite Field	Register	Description	
Counter Edge	96 to 106: DI Counter	This setting defines the pulse edge the DI Counter registers increments on.	
	Falling Edge Increment	 Select Falling Edge to increment the DI Counter register when the input goes from 1 to 0. 	
		• In the Modbus register, this is (1) ON.	
		 Select Rising Edge to increment the DI Counter register when input goes from 0 to 1. 	
		 In the Modbus register, this is (0) OFF. 	
Counting Speed	92 to 95: High-Speed DI	Determines which channels use pulse counting for input signals up to 10 kHz.	
	Counter on Isolated	If an input-only channel is set to high-speed, its corresponding isolated channel is set to standard speed.	
		Note : For more information, see the High-Speed DI Counter on Isolated register description 92 to 95: High–Speed DI Counter on Isolated (on page 81).	
		 Select Fast to set the channel to high-speed. 	
		• In the Modbus register, this is (1) ON.	
			 Assign high-speed counting to only one channel of 5 or 9, 6 or 10, 7 or 11, and 8 or 12.
		 High-speed counting is not de-bounced and inputs must not go below GND. 	
		Select Standard to set the channel to standard-speed.	
		 Standard speed counters support 100 Hz pulses, or 10 Hz pulses with de-bounce. 	
		 In the Modbus register, this is (0) OFF. 	
Resistor Pull	40056 to 40063: Resistor Pull	 Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs. 	
	Setting	• In the Modbus register, this is 1.	
		 Select Pull-Up to connect a pull-up resistor for closed- contact-to-ground inputs. 	
		In the Modbus register, this is 2.	
		Select None to disable both resistors.	
		 In the Modbus register, this is 0. 	

Input-Only Channel Digital Input Configuration

Page 53 of 103

Copyright © 2019 FreeWave

7.1.2. Digital Input Registers NOT in Tool Suite

Set additional functionality for a **Digital Input** using these registers that do not have an equivalent field in **Tool Suite**.

Digital Input Re	Digital Input Registers NOT in Tool Suite		
Register	Description		
72 to 83:	Clears the Digital Input counter to 0.		
DI Counter Clear	Critical counting ensures that each pulse is reported by only clearing pulses that have been read.		
	Note : For more information, see the DI Counter Clear the register description 72 to 83: DI Counter Clear (on page 81).		
136 to 147:	Scans for the input change at a much slower speed than the duration of the pulse.		
DI Counter Latch	Note : For more information, see the DI Counter Latch the register description 136 to 147: DI Counter Latch (on page 83).		

7.1.3. Input-only Channel Configured as an Digital Input

An input-only channel configured as a Digital Input has these specifications:

Item	Min	Typical	Max	Units
Input low (OFF) voltage	0	-	2.5	V
Input high (ON) voltage	3.0	-	Actual Power Supply Voltage	V
Pulse counting frequency, standard speed	-	-	100	Hz
Pulse counting frequency, high speed	-	-	10	kHz
Pulse counting frequency, de- bounced pulse	-	-	10	Hz
Pulse width, standard speed	4	-	-	ms
Pulse width, high-speed	40	-	-	μs
Pulse width, de-bounced	40	-	-	ms
Pull-up resistance	-	1	-	kΩ
Pull-up voltage (measured externally)	-	3.0	-	V
Pull-down resistance to ground	-	10	-	kΩ

Input-Only Channel Configured as an Digital Input

LUM0017AB Rev Sep-2019

Page 54 of 103

Copyright © 2019 FreeWave

7.2. Analog Input - Input-Only Channel

An input-only channel configured as an Analog Input returns data to the **3000 to 30016: Al Integer Result** register and **30032 to 30047: Al Floating Point Result** register associated with the channel. The channel has circuitry protection. If an overload occurs, the channel turns off automatically.

Note: For more information, see the description for register 10024 to 10035: Circuitry Protection Active (on page 83).

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting a universal channel as a Sensor Power channel, an input-only channel, or an output-only channel as an Analog or a Digital Input or Output, see Defining Channel Settings in Tool Suite (on page 23).

7.2.1. Input-Only Analog Input Configuration Settings

Use the information in the following table to configure an Analog Input.

Tool Suite Field	Equivalent Register	Description
Voltage Or Current	120 to 127: Al Current Mode	Select Voltage to return information in Volts (V). In the Modbus register, this is (1) ON.
		Select Current to return current information in milliAmps (mA). In the Modbus register, this is (0) OFF.
		 20-bit analog-to-digital converter yields 0.10% reading accuracy across entire operating temperature for voltage and current input signals.
		 Voltage range supports 1 to 5 V and 0 to 10 V analog signals.
		Complete voltage range is -2.5 to 12.5 V.
		Current range supports 4 to 20 mA analog signals.
		Complete current range is 0 to 25 mA.
Zero Current (mA)	40112 to 40119:	This setting calibrates the low end of the Analog Input or
Zero Voltage (mV)	AI, AO Zero Current 40096 to 40103: AI Zero Voltage	Output to zero.
		Set between 0 to 10000 mV or mA depending on the
		setting in the Voltage Or Current field.

Input-Only Analog Input Configuration Settings

LUM0017AB Rev Sep-2019

Page 55 of 103

Copyright © 2019 FreeWave

Input-Only Analog Input Configuration Settings					
Tool Suite Field	Equivalent Register	Description			
Current Span (μA) Voltage Span (mV)	40104 to 40111: Al Voltage Span	Sets the high end, or range, of the Analog Input or Output.			
40120 to 40127: AI, AO Current Span		 Note: See the register description 40120 to 40127: AI, AO Current Span (on page 89) for setting recommendations. For 16-bit readings, set between 0 and 65535. 			
		• For 20-bit readings, set between 0 and 1,048,575.			
Resistor Pull	40056 to 40063: Resistor Pull Setting	 Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs. In the Modbus register, this is 1. Select Pull-Up to connect a pull-up resistor for closed-contact-to-ground inputs. In the Modbus register, this is 2. Select None to disable both resistors. In the Modbus register, this is 0. 			
Filtering / Averaging	40040 to 40047: Al Filter Setting	This sets a moving average, in seconds, for the AI Integer Result and AI Floating Point Result registers			
	Ŭ	Use this setting to help filter out signal noise.			
		Select from these settings:			
		• 0 - Disabled			
					• 1 - 10 seconds (0.1 Hz)
		• 2 - 25 seconds (0.04 Hz)			
		• 3 - 50 seconds (0.02 Hz)			
	 4 - 100 seconds (0.01 Hz) 5 - 250 seconds (0.004 Hz) 				
		• 5 - 250 Seconds (0.004 HZ)			
	FREEWAVE Recommends : Leave this setting at 0 .				

_

LUM0017AB Rev Sep-2019

Page 56 of 103

Copyright © 2019 FreeWave

Input-Only Analog Input Configuration Settings		
Tool Suite Field	Equivalent Register	Description
Integer Type	112 to 119: AI Signed Integer Result	 This parameter sets the integer type to a signed or unsigned integer in the Al Integer Result register. A signed integer is required to report negative input voltages if the RTU/PLC supports signed integers only. Setting to Signed results in a signed integer. In the Modbus register, this is (1) ON. Setting to Unsigned results in an unsigned integer returned in the Al Integer Result register. In the Modbus register, this is (0) OFF. Setting this register to: O results in an unsigned integer returned in the Al Integer Result register. Setting to 1 results in a signed integer.

Input-Only Analog Input Configuration Settings

7.2.2. Tool Suite Serial Base Stack Settings

Set these parameters on the Stack Settings tab in Tool Suite for the Serial Base in the stack.

30			
Field	Description		
Floating Point Word Order	This setting determines the position of the Most Significant Word (MSW) and Lease Significant Word (LSW) in the AI Floating Point Result register for all devices in the stack.		
	Regular word order places the:		
	MSW at the lower address.		
	LSW at the higher address.		
	Example : MSW = 30032, LSW = 30033. Inverted word order places the LSW at the lower address and the MSW at the higher address.		
AI Integer	This setting determines the alignment of the AI Integer Result register.		
Results	The options include:		
Justification	Left		
	Right		

Tool Suite Serial Base Stack Settings

LUM0017AB Rev Sep-2019

Page 57 of 103

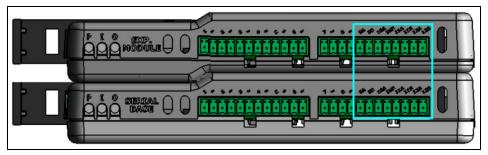
Copyright © 2019 FreeWave

7.2.3. Input-only Channel Configured as an Analog Input

An input-only channel configured as an Analog Input has these specifications:

Input-only Configured as an Analog Input				
ltem	Min	Typical	Мах	Units
Voltage Input				
Analog input voltage	-2.5	-	30	V
Full-scale input voltage*	-	13.75	-	V
Resolution	-	20	-	Bits
Scaling factor (all 20 bits)*	-	9.54	-	μV/LSB
Scaling factor (upper 16 bits)*	-	153	-	µV/LSB
Accuracy error (0 to 5 V input)	0	-	Greater of 1 mV or 0.10% of input	mA
Current Input				
Analog input current	0	-	25	mA
Circuitry protection limit	-	25	-	mA
Internal sense resistor	249	250	251	Ω
Full-scale input current range*	-	40	-	mA
Resolution	-	20	-	Bits
Scaling factor (all 20 bits)*	-	38.1	-	nA/LSB
Scaling factor (upper 16 bits)*	-	610	-	nA/LSB
Accuracy error (4 to 20 mA input)	0	-	Greater of 4 μ A or 0.10% of input	

Input-only Configured as an Analo	I 4
IDDUIT-ODIV CONTINUITED as an Analo	
input only configured us an Analo	ginput


*These settings apply only when zero and span registers are set to 0 (default)

Page 58 of 103

Copyright © 2019 FreeWave

8. Electrically Isolated Channels

- Channels 9, 10, 11, and 12 are built in the factory for either Digital Input or Digital Output.
- These channels can only serve the function they were built for.

Figure 17: IO Isolated Channels

These sections describe the features and characteristics of each isolated channel configuration.

- Digital Output Isolated Channel (on page 60)
- Digital Input Isolated Channel (on page 62)

Page 59 of 103

Copyright © 2019 FreeWave

8.1. Digital Output - Isolated Channel

An isolated Digital Output reports its current in milliAmps to the **DO Current** register and has these characteristics:

- Mechanical relays capable of switching up to 2 A at 250 VDC or VAC
- Long life relays with 80,000 cycles
- Configured for normally open
- Circuitry protection. If an overload occurs, the channel turns off automatically.
- For more information, see the register description for 10024 to 10035: Circuitry Protection Active (on page 83).

Configure a Sensor Power channel, an Analog or a Digital Input or Output settings in either **Tool Suite** or directly through the register settings.

Note: For information about setting an isolated channel as a Digital Output, see Defining Channel Settings in Tool Suite (on page 23).

8.1.1. Isolated Digital Output Configuration

Use the information in this table to configure a Digital Output.

Isolated Digital Output Configuration

Tool Suite Field	Register	Description
Apply Default Output	24 to 35:	If set to Yes :
	Apply Default DO, AO, Sensor Power	• When a device powers up or a communication timeout has occurred, the channel uses the values set in the Default DO, Sensor Power State register.
		 Set the Default Output field or the Default DO, Sensor Power State register.
		• In the Modbus register, this is (1) ON.
		If set to No :
		 When a device powers up or a communication timeout has occurred, the channel remains off.
		• In the Modbus register, this is (0) OFF.

Page 60 of 103

Copyright © 2019 FreeWave

Isolated Digital Output Configuration				
Tool Suite Field	Register	Description		
Default Output	48 to 59: Default DO, Sensor Power State	If apply defaults on power up or after a communication timeout is selected, use this setting to set the default state of the channel. Note: For more information, see the Default DO , Sensor Power State register description 48 to 59: Default DO, Sensor Power State (on page 81).		
Monostable Time (msec)	40080 to 40091: DO Monostable Timeout	 Enter the amount of time in milliseconds from 1 to 60000 (1 minute) after which the Digital Output channel goes to the state defined in the Default DO, Sensor Power State register. When set to 0 milliseconds, the channel is bi-stable and maintains its most recent state until it receives a command to change its state. 		

8.1.2. Tool Suite Serial Base Stack Settings

Set these parameters on the Stack Settings tab in Tool Suite for the Serial Base in the stack.

Tool Suite Serial Base Stack Settings		
Field	Description	
Default Delay (sec)	Enter the amount of time in seconds that an Expansion Module or Serial Base waits for a Modbus command or query before a communication timeout occurs. When a communication timeout occurs, the action defined in the Apply Default DO, AO, Sensor Power is taken.	
	Note : For more information, see the register description in 24 to 35: Apply Default DO, AO, Sensor Power (on page 80).	

8.1.3. Digital Output Registers NOT in Tool Suite

Set additional functionality for a **Digital Output** using these registers that do not have an equivalent field in **Tool Suite**.

Digital Output Registers NOT in Tool Suite		
Register	Description	
0 to 11:	 Set to (1) ON to sink current to ground when the transistor powers up. 	
DO, Sensor Power On	• When set to (0) OFF, the transistor turns off and the output remains floating, unless the Resistor Pull Setting register is set to 1 or 2.	

LUM0017AB Rev Sep-2019

Page 61 of 103

Copyright © 2019 FreeWave

Digital Output Registers NOT in Tool Suite		
Register	Description	
40056 to 40063: Resistor Pull	Select Pull-Down to connect a pull-down resistor to ground for use with closed-contact-to-voltage inputs.	
Setting	In the Modbus register, this is 1.	
	 Select Pull-Up to connect a pull-up resistor for closed-contact-to-ground inputs. 	
	In the Modbus register, this is 2.	
	Select None to disable both resistors.	
	In the Modbus register, this is 0.	

8.1.4. Isolated Channel Configured as an Digital Output

An isolated channel configured as a Digital Output has the following specifications:

Isolated Channel Configured as an Digital Output				
ltem	Min	Typical	Мах	Units
Output ON current across terminals	-	-	2	A
Output ON resistance across terminals	0	-	0.120	Ω
Output OFF resistance across terminals	10	-	-	ΜΩ
External AC or DC voltage connection	0	-	250	V

8.2. Digital Input - Isolated Channel

A isolated Digital Input provides data to the following registers:

- 10000 to 10011: DI State The present state of the channel.
- 30064 to 30087: DI Counter The number of pulse edges seen on the channel.

An isolated channel configured as a Digital Input accepts 30 V_{DC} input signals regardless of device voltage.

You can configure a Digital Input's settings in either Tool Suite or directly through the register settings.

Note: For information about setting an isolated channel as a Digital Input, see Defining Channel Settings in Tool Suite (on page 23).

LUM0017AB Rev Sep-2019

Page 62 of 103

Copyright © 2019 FreeWave

8.2.1. Isolated Digital Input Configuration

Use the information in this table to configure a Digital Input.

Isolated Digital Input Configuration		
Tool Suite Field	Register	Description
Counter Edge	96 to 106: DI Counter Falling	This setting defines the pulse edge the DI Counter registers increments on.
	Edge Increment	• Select Falling Edge to increment the DI Counter register when the input goes from 1 to 0.
		 In the Modbus register, this is (1) ON.
		Select Rising Edge to increment the DI Counter register when input goes from 0 to 1.
		 In the Modbus register, this is (0) OFF.
Counting Speed 92 to 95: High-Speed DI Counter on Isolated	This setting determines which channels use pulse counting for input signals up to 10 kHz.	
	•	If an input-only channel is set to be high-speed, its corresponding isolated channel is set to standard speed.
		 Select Fast to set the channel to high-speed.
		• In the Modbus register, this is (1) ON.
		• High-speed counting can only be assigned one channel of 5 or 9, 6 or 10, 7 or 11, and 8 or 12.
	 High-speed counting is not de-bounced and inputs must not go below GND. 	
	 Select Standard to set the channel to standard- speed. 	
		• Standard speed counters support 100 Hz pulses, or 10 Hz pulses with de-bounce.
		• In the Modbus register, this is (0) OFF.

Isolated Digital Input Configuration

LUM0017AB Rev Sep-2019

Page 63 of 103

Copyright © 2019 FreeWave

8.2.2. Digital Input Registers NOT in Tool Suite

Set additional functionality for a **Digital Input** using these registers that do not have an equivalent field in **Tool Suite**.

Digital Input Re	Digital Input Registers NOT in Tool Suite						
Register	Description						
72 to 83:	Clears the Digital Input counter to 0.						
DI Counter Clear	Critical counting ensures that each pulse is reported by only clearing pulses that have been read.						
	Note : For more information, see the DI Counter Clear the register description 72 to 83: DI Counter Clear (on page 81).						
136 to 147:	Scans for the input change at a much slower speed than the duration of the pulse.						
DI Counter Latch	Note : For more information, see the DI Counter Latch the register description 136 to 147: DI Counter Latch (on page 83).						

8.2.3. Isolated Channel Configured as an Digital Input

An isolated channel configured as a Digital Input has these specifications:

Isolated Channel Configured as an Digital Input								
ltem	Symbol	Min	Typical	Max	Units			
Input Low (OFF) voltage	V _{il}	0	-	1.2	V			
Input High (ON) voltage	V _{iH}	3.2	-	30	V			
Pulse counting frequency, standard speed	F _{pc}	-	-	100	Hz			
Pulse counting frequency, high speed	F _{pc}	-	-	10	kHz			
Pulse counting frequency, de- bounced	F _{pcdb}	-	-	10	Hz			
Pulse width, standard speed	T _{pc}	4	-	-	ms			
Pulse width, high-speed	T _{pc}	40	-	-	μs			
Pulse width, de-bounced	T _{pcdb}	40	-	-	ms			

Isolated Channel Configured as an Digital Input

LUM0017AB Rev Sep-2019

Page 64 of 103

Copyright © 2019 FreeWave

Madhua Quiak Dafaranaa

9. Quick Reference Modbus Register Map

This table summarizes commonly used coils and registers.

Note: Protocol Addressing in the table is Base 0.

	Universal Channels			Inp	Input-Only Channels			Isolated Channels				
Channel >>	1	2	3	4	5	6	7	8	9	10	11	12
Holding (Read / Write) Coils												
Digital Output, Sensor Power Setting	0	1	2	3	-	-	-	-	8	9	10	11
Clear Counter on Read	64	65	66	67	68	69	70	71	-	-	-	-
Digital Input Counter Clear	72	73	74	75	76	77	78	79	80	81	82	83
Digital Input Counter Latch	136	137	138	139	140	141	142	143	144	145	146	147
Input (Read-Only) Coils												
Digital Input Status	10000	10001	10002	10003	10004	10005	10006	10007	10008	10009	10010	10011
Circuitry Protection Status	10024	10025	10036	10027	10028	10029	10030	10031	10032	10033	10034	10035
Input (Read-Only) Registers												
Al Integer Result	30000	30002	30004	30006	30008	30010	30012	30014	-	-	-	-
AI Floating Point Result	30032	30034	30036	30038	30040	30042	30044	30046	-	-	-	-
Digital Input Counter	30064	30066	30068	30070	30072	30074	30076	30078	30080	30082	30084	30086
Modbus Request Counter	30096	-	-	-	-	-	-	-	-	-	-	-
Digital Output Current	30112	30113	30114	30115	-	-	-	-	-	-	-	-
Device Temperature	30152	-	-	-	-	-	-	-	-	-	-	-
Device Supply Voltage	30153	-	-	-	-	-	-	-	-	-	-	-
Holding (Read / Write) Registers												
Analog Output Setting	40000	40001	40002	40003	-	-	-	-	-	-	-	-
Communication Timeout Latch	40129	-	-	-	-	-	-	-	-	-	-	-

LUM0017AB Rev Sep-2019

Page 65 of 103

Copyright © 2019 FreeWave

10. Modbus Register Map

These sections provide a map and details for each entity in the Modbus register for the I/O Expansion Module and the Serial Base. The register map is grouped by the register type:

- Holding Coils (Read / Write Commands) (on page 67)
- Discrete Inputs (Read-Only Commands) (on page 71)
- Input Registers (Read-Only Commands) (on page 72)
- Holding Registers (Read / Write Commands) (on page 73)
- Modbus Timing (on page 77)

Important!: Non-volatile registers have a limited number (> 10,000) of lifetime write cycles and should not be used in place of volatile settings to control I/O activity.

When using the Modbus register:

 Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

• Add 1 to registers in protocol addressing (Base 0) to obtain PLC addressing (Base 1).

Important!: Modbus register readings are accurate 10 seconds after powering on the device.

Note: For a reference of the most often used registers, see Quick Reference Modbus Register Map (on page 65).

LUM0017AB Rev Sep-2019

Page 66 of 103

Copyright © 2019 FreeWave

10.1. Holding Coils (Read / Write Commands)

Use these Modbus command codes to read and write these coils:

- 1 Read Coils
- 5 Write Single Coil
- 15 Write Multiple Coils

Note: Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

Note: Registers in <u>YELLOW</u> are non-volatile registers whose values are saved through power loss. All other register settings are lost upon power loss.

Holding Cons (Read / Write)						
Address Protocol	PLC	Entity	l/O Channel	Bits		
0	1	DO, SENSOR POWER ON	1	1		
1	2	DO, SENSOR POWER ON	2	1		
2	3	DO, SENSOR POWER ON	3	1		
3	4	DO, SENSOR POWER ON	4	1		
8	9	DO, SENSOR POWER ON	9	1		
9	10	DO, SENSOR POWER ON	10	1		
10	11	DO, SENSOR POWER ON	11	1		
11	12	DO, SENSOR POWER ON	12	1		
24	25	APPLY DEFAULT DO, AO, SENSOR POWER	1	1		
25	26	APPLY DEFAULT DO, AO, SENSOR POWER	2	1		
26	27	APPLY DEFAULT DO, AO, SENSOR POWER	3	1		
27	28	APPLY DEFAULT DO, AO, SENSOR POWER	4	1		
32	33	APPLY DEFAULT DO, AO, SENSOR POWER	9	1		
33	34	APPLY DEFAULT DO, AO, SENSOR POWER	10	1		
34	35	APPLY DEFAULT DO, AO, SENSOR POWER	11	1		
35	36	APPLY DEFAULT DO, AO, SENSOR POWER	12	1		
48	49	DEFAULT DO, SENSOR POWER STATE	1	1		
49	50	DEFAULT DO, SENSOR POWER STATE	2	1		
50	51	DEFAULT DO, SENSOR POWER STATE	3	1		

Holding Coils (Read / Write)

LUM0017AB Rev Sep-2019

Page 67 of 103

Copyright © 2019 FreeWave

Holding Coils (Read /)	Write)
-------------------------	--------

Address Protocol	PLC	Entity	l/O Channel	Bits
51	52	DEFAULT DO, SENSOR POWER STATE	4	1
56	57	DEFAULT DO, SENSOR POWER STATE	9	1
57	58	DEFAULT DO, SENSOR POWER STATE	10	1
58	59	DEFAULT DO, SENSOR POWER STATE	11	1
59	60	DEFAULT DO, SENSOR POWER STATE	12	1
64	65	CLEAR COUNTER ON READ	1	1
65	66	CLEAR COUNTER ON READ	2	1
66	67	CLEAR COUNTER ON READ	3	1
67	68	CLEAR COUNTER ON READ	4	1
68	69	CLEAR COUNTER ON READ	5	1
69	70	CLEAR COUNTER ON READ	6	1
70	71	CLEAR COUNTER ON READ	7	1
71	72	CLEAR COUNTER ON READ	8	1
72	73	DI COUNTER CLEAR	1	1
73	74	DI COUNTER CLEAR	2	1
74	75	DI COUNTER CLEAR	3	1
75	76	DI COUNTER CLEAR	4	1
76	77	DI COUNTER CLEAR	5	1
77	78	DI COUNTER CLEAR	6	1
78	79	DI COUNTER CLEAR	7	1
79	80	DI COUNTER CLEAR	8	1
80	81	DI COUNTER CLEAR	9	1
81	82	DI COUNTER CLEAR	10	1
82	83	DI COUNTER CLEAR	11	1
83	84	DI COUNTER CLEAR	12	1
92	93	HIGH-SPEED DI COUNTER ON ISOLATED	5, 9	1
93	94	HIGH-SPEED DI COUNTER ON ISOLATED	6, 10	1
94	95	HIGH-SPEED DI COUNTER ON ISOLATED	7, 11	1
95	96	HIGH-SPEED DI COUNTER ON ISOLATED	8, 12	1
96	97	DI COUNTER FALLING EDGE INCREMENT	1	1
97	98	DI COUNTER FALLING EDGE INCREMENT	2	1
98	99	DI COUNTER FALLING EDGE INCREMENT	3	1

LUM0017AB Rev Sep-2019

Page 68 of 103

Copyright © 2019 FreeWave

Holding Coi	Holding Coils (Read / Write)						
Address Protocol	PLC	Entity	l/O Channel	Bits			
99	100	DI COUNTER FALLING EDGE INCREMENT	4	1			
100	101	DI COUNTER FALLING EDGE INCREMENT	5	1			
101	102	DI COUNTER FALLING EDGE INCREMENT	6	1			
102	103	DI COUNTER FALLING EDGE INCREMENT	7	1			
103	104	DI COUNTER FALLING EDGE INCREMENT	8	1			
104	105	DI COUNTER FALLING EDGE INCREMENT	9	1			
105	106	DI COUNTER FALLING EDGE INCREMENT	10	1			
106	107	DI COUNTER FALLING EDGE INCREMENT	11	1			
107	108	DI COUNTER FALLING EDGE INCREMENT	12	1			
112	113	AI SIGNED INTEGER RESULT	1	1			
113	114	AI SIGNED INTEGER RESULT	2	1			
114	115	AI SIGNED INTEGER RESULT	3	1			
115	116	AI SIGNED INTEGER RESULT	4	1			
116	117	AI SIGNED INTEGER RESULT	5	1			
117	118	AI SIGNED INTEGER RESULT	6	1			
118	119	AI SIGNED INTEGER RESULT	7	1			
119	120	AI SIGNED INTEGER RESULT	8	1			
120	121	AI, AO CURRENT, VOLTAGE MODE	1	1			
121	122	AI, AO CURRENT, VOLTAGE MODE	2	1			
122	123	AI, AO CURRENT, VOLTAGE MODE	3	1			
123	124	AI, AO CURRENT, VOLTAGE MODE	4	1			
124	125	AI, AO CURRENT, VOLTAGE MODE	5	1			
125	126	AI, AO CURRENT, VOLTAGE MODE	6	1			
126	127	AI, AO CURRENT, VOLTAGE MODE	7	1			
127	128	AI, AO CURRENT, VOLTAGE MODE	8	1			
136	137	DI COUNTER LATCH	1	1			
137	138	DI COUNTER LATCH	2	1			
138	139	DI COUNTER LATCH	3	1			
139	140	DI COUNTER LATCH	4	1			
140	141	DI COUNTER LATCH	5	1			
141	142	DI COUNTER LATCH	6	1			
142	143	DI COUNTER LATCH	7	1			

LUM0017AB Rev Sep-2019

Page 69 of 103

Copyright © 2019 FreeWave

Holding Coils (Read / Write)						
Address Protocol	PLC	Entity	l/O Channel	Bits		
143	144	DI COUNTER LATCH	8	1		
144	145	DI COUNTER LATCH	9	1		
145	146	DI COUNTER LATCH	10	1		
146	147	DI COUNTER LATCH	11	1		
147	148	DI COUNTER LATCH	12	1		
152	153	PULSE COUNTER DEBOUNCE	1	1		
153	154	PULSE COUNTER DEBOUNCE	2	1		
154	155	PULSE COUNTER DEBOUNCE	3	1		
155	156	PULSE COUNTER DEBOUNCE	4	1		
156	157	PULSE COUNTER DEBOUNCE	5	1		
157	158	PULSE COUNTER DEBOUNCE	6	1		
158	159	PULSE COUNTER DEBOUNCE	7	1		
159	160	PULSE COUNTER DEBOUNCE	8	1		
160	161	PULSE COUNTER DEBOUNCE	9	1		
161	162	PULSE COUNTER DEBOUNCE	10	1		
162	163	PULSE COUNTER DEBOUNCE	11	1		
163	164	PULSE COUNTER DEBOUNCE	12	1		

Page 70 of 103

Copyright © 2019 FreeWave

10.2. Discrete Inputs (Read-Only Commands)

Use these Modbus command codes to read these discrete inputs:

• 2: Read Discrete Inputs

Note: Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

Address	PLC	Entity	I/O	Bits
Protocol	PLC	Entity	Channel	DILS
10000	10001	DI STATE	1	1
10001	10002	DI STATE	2	1
10002	10003	DI STATE	3	1
10003	10004	DI STATE	4	1
10004	10005	DI STATE	5	1
10005	10006	DI STATE	6	1
10006	10007	DI STATE	7	1
10007	10008	DI STATE	8	1
10008	10009	DI STATE	9	1
10009	10010	DI STATE	10	1
10010	10011	DI STATE	11	1
10011	10012	DI STATE	12	1
10024	10025	CIRCUITRY PROTECTION ACTIVE	1	1
10025	10026	CIRCUITRY PROTECTION ACTIVE	2	1
10026	10027	CIRCUITRY PROTECTION ACTIVE	3	1
10027	10028	CIRCUITRY PROTECTION ACTIVE	4	1
10028	10029	CIRCUITRY PROTECTION ACTIVE	5	1
10029	10030	CIRCUITRY PROTECTION ACTIVE	6	1
10030	10031	CIRCUITRY PROTECTION ACTIVE	7	1
10031	10032	CIRCUITRY PROTECTION ACTIVE	8	1
10032	10033	CIRCUITRY PROTECTION ACTIVE	9	1
10033	10034	CIRCUITRY PROTECTION ACTIVE	10	1
10034	10035	CIRCUITRY PROTECTION ACTIVE	11	1
10035	10036	CIRCUITRY PROTECTION ACTIVE	12	1

Discrete Inputs (Read-Only)

LUM0017AB Rev Sep-2019

Page 71 of 103

Copyright © 2019 FreeWave

10.3. Input Registers (Read-Only Commands)

Use these Modbus command codes to read these registers:

• 4 - Read Input Registers

Note: Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

Address	PLC	Entity	l/O Channel	Bits
Protocol				
30000/30001	30001/30002	AI INTEGER RESULT	1	32
30002/30003	30003/30004	AI INTEGER RESULT	2	32
30004/30005	30005/30006	AI INTEGER RESULT	3	32
30006/30007	30007/30008	AI INTEGER RESULT	4	32
30008/30009	30009/30010	AI INTEGER RESULT	5	32
30010/30011	30011/30012	AI INTEGER RESULT	6	32
30012/30013	30013/30014	AI INTEGER RESULT	7	32
30014/30015	30015/30016	AI INTEGER RESULT	8	32
30032/30033	30033/30034	AI FLOATING POINT RESULT	1	32
30034/30035	30035/30036	AI FLOATING POINT RESULT	2	32
30036/30037	30037/30038	AI FLOATING POINT RESULT	3	32
30038/30039	30039/30040	AI FLOATING POINT RESULT	4	32
30040/30041	30041/30042	AI FLOATING POINT RESULT	5	32
30042/30043	30043/30044	AI FLOATING POINT RESULT	6	32
30044/30045	30045/30046	AI FLOATING POINT RESULT	7	32
30046/30047	30047/30048	AI FLOATING POINT RESULT	8	32
30064/30065	30065/30066	DI COUNTER	1	32
30066/30067	30067/30068	DI COUNTER	2	32
30068/30069	30069/30070	DI COUNTER	3	32
30070/30071	30071/30072	DI COUNTER	4	32
30072/30073	30073/30074	DI COUNTER	5	32
30074/30075	30075/30076	DI COUNTER	6	32
30076/30077	30077/30078	DI COUNTER	7	32
30078/30079	30079/30080	DI COUNTER	8	32

Input Registers (Read-Only)

LUM0017AB Rev Sep-2019

Page 72 of 103

Copyright © 2019 FreeWave

Input Registers (Read-Only)					
Address Protocol	PLC	Entity	l/O Channel	Bits	
30080/30081	30081/30082	DI COUNTER	9	32	
30082/30083	30083/30084	DI COUNTER	10	32	
30084/30085	30085/30086	DI COUNTER	11	32	
30086/30087	30087/30088	DI COUNTER	12	32	
30096	30097	MODBUS REQUEST COUNTER	-	16	
30112	30113	DOCURRENT	1	16	
30113	30114	DOCURRENT	2	16	
30114	30115	DOCURRENT	3	16	
30115	30116	DOCURRENT	4	16	
30116	30117	DOCURRENT	5	16	
30117	30118	DOCURRENT	6	16	
30118	30119	DOCURRENT	7	16	
30119	30120	DOCURRENT	8	16	
30152	30153	DEVICE TEMPERATURE	-	16	
30153	30154	VBATT VOLTAGE	-	16	

10.4. Holding Registers (Read / Write Commands)

Use these Modbus command codes to read and write these registers:

- 3 Read Holding Registers
- 6 Write Single Register
- 16 Write Multiple Registers

Note: Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

Note: Registers in <u>YELLOW</u> are non-volatile registers whose values are saved through power loss. All other register settings are lost upon power loss.

LUM0017AB Rev Sep-2019

Page 73 of 103

Copyright © 2019 FreeWave

Holding Registers (Read / Write)					
Address Protocol	PLC	Entity	I/O Channel	Bits	
40000	40001	AO COMMAND	1	16	
40001	40002	AO COMMAND	2	16	
40002	40003	AO COMMAND	3	16	
40003	40004	AO COMMAND	4	16	
40008	40009	DEFAULT AO COMMAND	1	16	
40009	40010	DEFAULT AO COMMAND	2	16	
40010	40011	DEFAULT AO COMMAND	3	16	
40011	40012	DEFAULT AO COMMAND	4	16	
40016	40017	CHANNEL MODE	1	16	
40017	40018	CHANNEL MODE	2	16	
40018	40019	CHANNEL MODE	3	16	
40019	40020	CHANNEL MODE	4	16	
40020	40021	CHANNEL MODE	5	16	
40021	40022	CHANNEL MODE	6	16	
40022	40023	CHANNEL MODE	7	16	
40023	40024	CHANNEL MODE	8	16	
40024	40025	CHANNEL MODE	9	16	
40025	40026	CHANNEL MODE	10	16	
40026	40027	CHANNEL MODE	11	16	
40027	40028	CHANNEL MODE	12	16	
40040	40041	AI FILTER SETTING	1	16	
40041	40042	AI FILTER SETTING	2	16	
40042	40043	AI FILTER SETTING	3	16	
40043	40044	AI FILTER SETTING	4	16	
40044	40045	AI FILTER SETTING	5	16	
40045	40046	AI FILTER SETTING	6	16	
40046	40047	AI FILTER SETTING	7	16	
40047	40048	AI FILTER SETTING	8	16	
40056	40057	RESISTOR PULL SETTING	1	16	
40057	40058	RESISTOR PULL SETTING	2	16	
40058	40059	RESISTOR PULL SETTING	3	16	
40059	40060	RESISTOR PULL SETTING	4	16	

LUM0017AB Rev Sep-2019

Page 74 of 103

Copyright © 2019 FreeWave

Holding Registers (Read / Write)					
Address Protocol	PLC	Entity	l/O Channel	Bits	
40060	40061	RESISTOR PULL SETTING	5	16	
40061	40062	RESISTOR PULL SETTING	6	16	
40062	40063	RESISTOR PULL SETTING	7	16	
40063	40064	RESISTOR PULL SETTING	8	16	
40072	40073	AORESOLUTION	1	16	
40073	40074	AORESOLUTION	2	16	
40074	40075	AORESOLUTION	3	16	
40075	40076	AORESOLUTION	4	16	
40080	40081	DO MONOSTABLE TIMEOUT	1	16	
40081	40082	DO MONOSTABLE TIMEOUT	2	16	
40082	40083	DO MONOSTABLE TIMEOUT	3	16	
40083	40088	DO MONOSTABLE TIMEOUT	4	16	
40088	40089	DO MONOSTABLE TIMEOUT	9	16	
40089	40090	DO MONOSTABLE TIMEOUT	10	16	
40090	40091	DO MONOSTABLE TIMEOUT	11	16	
40091	40092	DO MONOSTABLE TIMEOUT	12	16	
40096	40097	AI ZERO VOLTAGE	1	16	
40097	40098	AI ZERO VOLTAGE	2	16	
40098	40099	AI ZERO VOLTAGE	3	16	
40099	40100	AI ZERO VOLTAGE	4	16	
40100	40101	AI ZERO VOLTAGE	5	16	
40101	40102	AI ZERO VOLTAGE	6	16	
40102	40103	AI ZERO VOLTAGE	7	16	
40103	40104	AI ZERO VOLTAGE	8	16	
40104	40105	AI VOLTAGE SPAN	1	16	
40105	40106	AI VOLTAGE SPAN	2	16	
40106	40107	AI VOLTAGE SPAN	3	16	
40107	40108	AI VOLTAGE SPAN	4	16	
40108	40109	AI VOLTAGE SPAN	5	16	
40109	40110	AI VOLTAGE SPAN	6	16	
40110	40111	AI VOLTAGE SPAN	7	16	
40111	40112	AI VOLTAGE SPAN	8	16	

LUM0017AB Rev Sep-2019

Page 75 of 103

Copyright © 2019 FreeWave

Holding Reg	Holding Registers (Read / Write)					
Address Protocol	PLC	Entity	l/O Channel	Bits		
40112	40113	AI, AO ZERO CURRENT	1	16		
40113	40114	AI, AO ZERO CURRENT	2	16		
40114	40115	AI, AO ZERO CURRENT	3	16		
40115	40116	AI, AO ZERO CURRENT	4	16		
40116	40117	AI, AO ZERO CURRENT	5	16		
40117	40118	AI, AO ZERO CURRENT	6	16		
40118	40119	AI, AO ZERO CURRENT	7	16		
40119	40120	AI, AO ZERO CURRENT	8	16		
40120	40121	AI, AO CURRENT SPAN	1	16		
40121	40122	AI, AO CURRENT SPAN	2	16		
40122	40123	AI, AO CURRENT SPAN	3	16		
40123	40124	AI, AO CURRENT SPAN	4	16		
40124	40125	AI, AO CURRENT SPAN	5	16		
40125	40126	AI, AO CURRENT SPAN	6	16		
40126	40127	AI, AO CURRENT SPAN	7	16		
40127	40128	AI, AO CURRENT SPAN	8	16		
40128	40129	COMM CONNECTION	-	16		
40129	40130	COMM TIMEOUT LATCH	-	16		
40130	40131	COMM PORT BAUD RATE	-	16		
40131	40132	COMM PORT PARITY	-	16		
40132	40133	COM PORT STOP BITS	-	16		
40133	40134	MODBUS MIN TRANSMIT INTER-MSG INTERVAL	-	16		
40134	40135	RS485 TURN ON DELAY	-	16		
40135	40136	RS485 TURN OFF DELAY	-	16		

LUM0017AB Rev Sep-2019

Page 76 of 103

Copyright © 2019 FreeWave

10.5. Modbus Timing

Communication from the Base Modules to Expansion Modules occurs on a bus architecture.

- The bus architecture provides the fastest communication times for the entire stack because all Expansion Modules see the message from the Base at the same time.
- There is no difference in messaging times or execution times whether there is one Expansion Module in a stack or fifteen.
- The Modbus command response time is the time it takes a device to interpret and respond to a Modbus command or query.

Example: Polling the value of a 4 to 20 mA input.

10.5.1. Modbus Command Response Time by Device and Command Type

The output execution delay time is the time it takes a device to execute a command (e.g.,change a Digital Output from low to high).

The time is referenced from the moment the complete Modbus command arrives at the data port.

	Serial Base	Expansion Module	Expansion Module	Expansion Module	
Stack ID	0	1	2	15	Units
Command 1: Read Coils					
1 coil	4	11	11	11	ms
160 coils	6	14	14	14	ms
Command 2: Read Discrete Inputs					
1 discrete input	4	11	11	11	ms
80 discrete inputs	6	12	12	12	ms
Command 3: Read Holding Registers					
1 holding register	4	11	11	11	ms
125 holding registers	18	52	52	52	ms
Command 4: Read Input Registers					
1 input register	4	11	11	11	ms
125 input registers	18	52	52	52	ms

Modbus Command Response Time by Device and Command Type

LUM0017AB Rev Sep-2019

Page 77 of 103

Copyright © 2019 FreeWave

Modbus Command Response Time by Device and Command Type						
	Serial Base	Expansion Module	Expansion Module	Expansion Module		
Stack ID	0	1	2	15	Units	
Command 5: Write Single Coil	4	11	11	11	ms	
Command 6: Write Single Register	4	11	11	11	ms	
Command 15: Write Multiple Coils						
2 coils	4	11	11	11	ms	
120 coils	6	14	14	14	ms	
Command 16: Write Multiple Registers						
2 holding registers	4	11	11	11	ms	
123 holding registers	11	43	43	43	ms	

10.5.2. Modbus Output Execution Delay Time by Device and I/O Type

Modbus Output Execution Delay Time by Device and I/O Type					
	Serial Base	Expansion Module	Expansion Module	Expansion Module	
Stack ID	0	1	2	15	Units
Non-Isolated Digital Output					
Command 5 (writing 1 coil)	3	6	6	6	ms
Command 15 (writing 120 coils)	3	8	8	8	ms
Isolated Digital Output					
Command 5 (writing 1 coil)	17	14	14	14	ms
Command 15 (writing 120 coils)	18	16	16	16	ms
Analog Output					
Command 6 (writing 1 registers)	3	6	6	6	ms
Command 16 (writing 123 registers)	3	33	33	33	ms

LUM0017AB Rev Sep-2019

Page 78 of 103

Copyright © 2019 FreeWave

11. Modbus Register Descriptions

This section describes the functionality of each register in detail.

- The register addresses are referenced in protocol addressing (Base 0).
- For PLC addressing (Base 1), add 1 to each register address listed.

When using the Modbus register:

 Add 200 to the register addresses for each device in the stack to access stacked Expansion Modules.

Example: To set register 10004 in your 2nd expansion module, the address is 10404.

• Add 1 to registers in protocol addressing (Base 0) to obtain PLC addressing (Base 1).

Important!: Modbus register readings are accurate 10 seconds after powering on the device.

- Holding Coils (Read / Write) Descriptions (on page 80)
- Discrete Inputs (Read-Only) Descriptions (on page 83)
- Input Registers (Read-Only) Descriptions (on page 83)
- Holding Registers (Read / Write) Descriptions (on page 85)

LUM0017AB Rev Sep-2019

Page 79 of 103

Copyright © 2019 FreeWave

This document is subject to change without notice. This document is the property of FreeWave Technologies, Inc. and contains proprietary information owned by FreeWave. This document cannot be reproduced in whole or in part by any means without written permission from FreeWave Technologies, Inc.

11.1. Holding Coils (Read / Write) Descriptions 11.1.1. 0 to 11: DO, Sensor Power ON

Upon power up, this register takes the state of Default DO, Sensor Power State if the Apply Default DO, AO, Sensor Power register is set to (1) ON.

0 to 11: DO, Sensor Power ON				
Channel	Description			
Universal Channel as Digital Output	 When a universal channel is configured as Digital Output and this coil is set to (1) ON, the transistor turns on and sinks current to ground. When this coil is set to (0) OFF, the transistor turns off and the output remains floating, unless the internal pull-up or pull-down resistor is enabled. For more information about the Resistor Pull setting, see the register description Holding Registers (Read / Write) Descriptions (on page 95) 			
Universal Channel as Sensor Power	 85). When a universal channel is configured as Sensor Power and this coil is set to (1) ON, then VBATT is applied to this channel through protection circuitry. When this coil is set to (0) OFF, then no power is applied to the channel. If Sensor Power should be applied on power up, then registers 24 to 35: Apply Default DO, AO, Sensor Power and 48 to 59: Default DO, Sensor Power State must be set to ON (1) for the appropriate channel. 			
Isolated Channel as Digital Output	 When an isolated channel is configured as Digital Output and this coil is set to (1) ON, the relay closes and the terminals are shorted together. When this coil is set to (0) OFF, the relay opens and the terminals for the channel are left floating. 			

11.1.2. 24 to 35: Apply Default DO, AO, Sensor Power

This register is used upon device power up and upon communication timeout.

- If this register is set to (1) ON, upon power up, channels configured as Digital Output, Analog Output, and Sensor Power output their default values.
- If this register is set to (0) OFF, then factory default values are applied upon power up.

Every device has a timer that is reset when it receives a Modbus command or query.

 If the device does not receive a Modbus command or query for the time set in the Default Delay parameter in the Stack Settings tab in Tool Suite, then a communication timeout occurs.

Page 80 of 103

Copyright © 2019 FreeWave

- If a communication timeout occurs and this register is set to (1) ON, the channels configured as Digital Output, Analog Output, or Sensor Power changes outputs to the default settings.
- If this register is set to (0) OFF, then the channel outputs do not change.

11.1.3. 48 to 59: Default DO, Sensor Power State

The default state for channels configured as Digital Output and Sensor Power.

Note: For this setting to apply, register **24 to 35: Apply Default DO, AO, Sensor Power** register must be set to **(1) ON** for the channel.

11.1.4. 64 to 71: Clear Counter on Read

This register determines whether the Digital Input Counter is reset to zero (0) when read.

- Writing zero (0) in this register means the counts will accrue.
 - They will NOT erase automatically.
- Writing 1 to this register, will cause the register to reset to zero (0)after every read.

Note: See Quick Reference Modbus Register Map (on page 65) for specific offset information.

11.1.5. 72 to 83: DI Counter Clear

This register clears the Digital Input counters in one of two ways:

- Writing 1 to this register forces the counter to 0.
 - This method forces the count to 0 even if pulses have arrived since the last counter read.
- Writing 0 clears the register in a way called Critical Counting.
 - Critical Counting is a function that keeps track of all the pulses that have been reported.
- By clearing this register with **Critical Counting**, then the counter is set to the number of pulses that have arrived since the last counter read.

Use this to keep track of each pulse that arrives.

11.1.6. 92 to 95: High–Speed DI Counter on Isolated

There are four high-speed Digital Input counters available that support counting up to 10 kHz.

- Use this register to select which channel to use as high-speed counters.
- If a channel is NOT assigned to high-speed counting it supports standard speed counting.
- Standard-speed counters support 100 Hz pulses or 10 Hz pulses with de-bounce.

Page 81 of 103

Copyright © 2019 FreeWave

92 to 95: High–Speed DI Counter on Isolated					
Coil	Set to (1) ON	Set to (0) OFF			
Coil 92	Channel 9 to high-speed	Channel 9 to standard-speed			
	Channel 5 to standard speed	Channel 5 to high-speed			
Coil 93	Channel 10 to high-speed	Channel 10 to standard-speed			
	Channel 6 to standard speed	Channel 6 to high-speed			
Coil 94	Channel 11 to high-speed	Channel 11 to standard-speed			
	Channel 7 to standard speed	Channel 7 to high-speed			
Coil 95	Channel 12 to high-speed	Channel 12 to standard-speed			
	Channel 8 to standard speed	Channel 8 to high-speed			

11.1.7. 96 to 106: DI Counter Falling Edge Increment

- When this coil is (1) ON, the counter for a Digital Input is incremented when the input goes from 1 to 0 (a falling edge).
- When this coil is (0) OFF, the counter for a Digital Input is incremented when the input goes from 0 to 1 (on a rising edge).

11.1.8. 112 to 119: AI Signed Integer Result

- When a channel is configured as Analog Input and this coil is (1) ON, the Al Integer Result register is a signed number.
 - A signed number is necessary to report negative input voltages or if the RTU/PLC supports signed results only.
- When this register is set to (0) OFF, the AI Integer Result register is an unsigned number.
 - The default is (0) OFF.

11.1.9. 120 to 127: AI, AO Current, Voltage Mode

- When set to (1) ON, an internal 250 ohm sense resistor is turned on to report 4 to 20 mA inputs.
 - The complete current range is from 0 to 25 mA.
- Setting this coil to (0) OFF disables the sense resistor and supports reading voltage input.
 - This is needed for 1 to 5 V and 0 to 10 V transmitters.
 - The complete voltage range is from -2.5 to +12.5 V.

Page 82 of 103

Copyright © 2019 FreeWave

This document is subject to change without notice. This document is the property of FreeWave Technologies, Inc. and contains proprietary information owned by FreeWave. This document cannot be reproduced in whole or in part by any means without written permission from FreeWave Technologies, Inc.

11.1.10. 136 to 147: DI Counter Latch

This register is set to ON internally when the **DI Counter** register is incremented.

- This is useful for systems that poll the Digital Input states at slower speeds than the duration of Digital Input signals.
- Write 0 to this register to clear the latch.

11.1.11. 152 to 163: Pulse Counter De-Bounce

- If set to (1) ON, the software takes multiple samples before deciding that an edge is a real edge not noise.
 - The price is drastic reduction in max frequency that can be counted from 800 Hz to 10 Hz.
- If set to (0) OFF, there is no software processing and noise can be treated as signal (false counts may be encountered).

11.2. Discrete Inputs (Read-Only) Descriptions

11.2.1. 10000 to 10011: DI State

This input reports the present state of the channel configured as Digital Input.

11.2.2. 10024 to 10035: Circuitry Protection Active

- This input reports the status of circuitry protection on the channel.
 - Circuitry protection is used in Digital Output, Analog Input in current mode, and Sensor Power modes.
 - When this coil is (1) ON, an overload condition has been detected and the channel function is disabled for a short time.
- The channel is retried at 10 second intervals to test whether the overload condition has been removed.
- When the channel is within its limits, this register is (0) OFF.

11.3. Input Registers (Read-Only) Descriptions 11.3.1. 30000 to 30016: Al Integer Result

This register contains the most recent Analog Input conversion result reported as an integer.

- The scale of the AI Integer Result depends on the settings in the AI Voltage Span and AI AO Current Span registers.
- The Long Integer Word Order setting on the Serial Base determines the position of the MSW and LSW in the AI Integer Result registers for all devices in the stack.
 - Regular word order places the MSW at the lower address and the LSW at the higher address (e.g., MSW = 30000, LSW = 30001).
 - Inverted word order places the LSW at the lower address and the MSW at the higher address (e.g., LSW = 30000, MSW = 30001).

Copyright © 2019 FreeWave

• Long Integer Word Order helps connections with controllers that only accept one word order or another.

Note: When a Radio Base is used then the Long Integer Word Order is forced to regular.

- The AI Integer Result Justification setting on the Serial Base determines the position of the AI Result Integer inside the 32-bit registers.
 - Left justification places the most significant 16 bits of the AI Result in the MSW.
 - Left justification is commonly used to access only the most significant 16 bits.
 - With left justification only 1 register can be accessed and obtain a 16-bit integer.
 - With left justification you generally read 2 registers and obtain a 32-bit integer containing a 20-bit AI Result.
 - When a Radio Base is used, then the AI Integer Result Justification is forced to left.
 - Right justification places the least significant 16 bits of the **AI Result** in the Least Significant Word (LSW).
 - Right justification is commonly used to access the complete 20-bit result.

11.3.2. 30032 to 30047: AI Result, Floating Point

This register contains the most recent Analog Input conversion result reported as a floating point number.

Note: This setting allows controllers that require reverse register order to access 32-bit floating point registers without additional programming.

- The decimal number represents the actual voltage in V or current in mA.
- The setting in registers **121 to 128: AI Current Mode** determines whether the channel is used in current or voltage mode.
- The Floating Point Word Orderr setting on the Serial Base determines the position of the MSW and LSW in the AI Result, Floating Point registers for all devices in the stack.
- Regular word order places the MSW at the lower address and the LSW at the higher address (e.g., MSW = 30000, LSW = 30001).
- Inverted word order places the LSW at the lower address and the MSW at the higher address (e.g., LSW = 30000, MSW = 30001).
- When a Radio Base is used then the Long Integer Word Order is forced to regular.

11.3.3. 30064 to 30087: DI Counter

The **DI Counter** reports the number of pulse edges seen on a Digital Input.

- The pulse edge (rising edge or falling edge) that increments the **DI Counter** is set by coils **96 to 107: DI Counter Falling Edge Increment**.
- Read both the MSW and LSW for a 32-bit unsigned integer.
- Alternatively, read the LSW to gain access to a 16-bit unsigned integer result.

Copyright © 2019 FreeWave

This document is subject to change without notice. This document is the property of FreeWave Technologies, Inc. and contains proprietary information owned by FreeWave. This document cannot be reproduced in whole or in part by any means without written permission from FreeWave Technologies, Inc.

- The maximum counting rate for:
 - de-bounced counters is 10 Hz with a minimum pulse width of 40 ms.
 - standard-speed counters is 100 Hz with a minimum pulse width of 4 ms.
 - high-speed counters is 10 kHz with a minimum pulse width of 40 µs.
- Whether a channel is standard-speed or high-speed is determined by the setting of coils **92** to **95: High-speed DI Counter On Isolated**.
- The Long Integer Word Order setting on the Serial Base applies to these registers.

Note: See the 30000 to 30016: Al Integer Result (on page 83) for a description of the Long Integer Word Order setting.

11.3.4. 30096: Modbus Request Counter

This register is a running total of Modbus requests.

- Every time a Modbus request is received and processed this register is incremented.
- This is useful for PLCs and RTUs that do not handle Modbus failures appropriately.
- If the PLC or RTU reports the same number in this register time after time despite continuous polling attempts, then communication has failed between the PLC and the I/O Expansion device.

11.3.5. 30112 to 30119: DO Current

This register represents the current in milliAmps flowing through Digital Output channels set to (1) ON.

Important!: It is NOT meant to accurately measure the current to report an approximate current confirming flow.

11.3.6. 30152: Device Temperature

This is the temperature of the device circuit board reported as a signed integer with units of 1° C per Least Significant Bit (lsb).

11.3.7. 30153: VBATT

- This is the supply voltage to the device as an unsigned integer reported in 1 mV per LSb.
- This is useful to remotely monitor the battery level.

11.4. Holding Registers (Read / Write) Descriptions 11.4.1. 40000 to 40003: AO Command

This is the analog value to output when a channel is used as Analog Output.

Page 85 of 103

Copyright © 2019 FreeWave

LUM0017AB Rev Sep-2019

- When registers 40072 to 40075: AO Resolution are set to 0 then the scaling factor is 1 μA per bit.
- When registers 40072 to 40075: AO Resolution are NOT set to 0, then the scaling factor is determined by registers 40120 to 40127: AI, AO Current Span.

In both cases case, the value in the **40112 to 40119: AI, AO Zero Current** register is added to the **AO Command** register and the sum is the actual current output.

However, the output cannot be higher than 22 mA. If the sum of the **AI**, **AO Zero Current** register and the **AO Command** register is greater than 22 mA, the value of the **AO Command** is capped to reach the maximum output of 22 mA.

11.4.2. 40008 to 40011: Default AO Command

The value in this register is the AO Command in default conditions.

11.4.3. 40016 to 40027: Channel Mode

This register sets the channel to be one of these types:

- 0 Off
- 1 Digital Output
- 2 Digital Input

- 3 Analog Output
- 4 Analog Input
- 5 Sensor Power

Important!: If a channel is changed to a different function, (e.g., change a Universal Channel from Digital Input to Analog Input) wait 2 seconds for reliable readings from the channel.

11.4.4. 40040 to 40047: AI Filter Setting

The filter setting turns on filtering (a moving average) for **AI Integer Result** and **AI Floating Point Result**.

- Use filtering to reduce signal noise by providing a stable reading.
- Setting this register to 0 disables filtering.
- Setting this register to values from 1 to 5 increases the filtering / averaging times:
 - 1 10 seconds (0.1 Hz)
 - 2 25 seconds (0.04 Hz)
 - 3 50 seconds (0.02 Hz)
 - 4 100 seconds (0.01 Hz)
 - 5 250 seconds (0.004 Hz)

11.4.5. 40056 to 40063: Resistor Pull Setting

- Setting this coil to:
 - 0 disables both resistors.

Page 86 of 103

Copyright © 2019 FreeWave

- 1 connects a 10 k Ω pull-down resistor to ground for use with closed-contact-to-voltage inputs and outputs.
- 2 connects a 1 k Ω pull-up resistor to 3 V for closed-contact-to-ground inputs and outputs.

11.4.6. 40072 to 40075: AO Resolution

Use these registers to change the scaling of **AO Command**.

- Some PLCs and RTUs support only 16 bits, 14 bits, 12 bits, or signed integers.
- The AO Command scaling depends on this setting:
 - 0 1 µA per bit
 - 16-bit resolution
 - 15-bit resolution (This is the recommended setting for PLCs or RTUs that only support 16-bit signed integers.)
 - 14-bit resolution
 - 12-bit resolution

11.4.7. 40080 to 40091: DO Monostable Timeout

Enter the amount of time in milliseconds from 1 to 60000 (1 minute) after which the Digital Output goes to its default state as defined in register **48 to 59: Default DO, Sensor Power State**.

- When this register is set to a number **other than 0**, the mono-stable setting is enabled.
- When this register is set to 0, the Digital Output is bi-stable and the monostable time out is no longer enabled.
 - A bi-stable Digital Output maintains the last state until a command is received that changes the Digital Output state.

11.4.8. 40096 to 40103: AI Zero Voltage

This register is the voltage that results in the Analog Input reporting 0 in the **AI Integer Result** register.

- The scaling factor for this register is 1 mV per bit and the valid range is from 0 to 10000 mV.
- It is useful for:
 - translating offset sensors (e.g.,1 to 5 V transmitters) so that their minimum output reports 0 in the **AI Integer Result** register.
 - adjusting AI readings to provide calibration capabilities.

Note: See 40104 to 40111: AI Voltage Span for recommended settings with 1 to 5 V and 0 to 10 V sensors.

Page 87 of 103

Copyright © 2019 FreeWave

This document is subject to change without notice. This document is the property of FreeWave Technologies, Inc. and contains proprietary information owned by FreeWave. This document cannot be reproduced in whole or in part by any means without written permission from FreeWave Technologies, Inc.

11.4.9. 40104 to 40111: AI Voltage Span

This register sets the span and scaling factor for **AI Integer Result**.

- This register added to AI Zero Voltage is the voltage that results in full scale in AI Integer Result.
- For 16-bit readings, full scale is 65535, and for 20-bit readings full scale is 1,048,575.

The scaling factor for this register is 1 mV per bit and the valid range is from 0 to 12,500 mV. It is useful for translating sensors such as 1 to 5 V transmitters so their maximum output reports full scale in the AI Integer Result register.

Recommended settings for 1 to 5 V sensors:

- Set Al Zero Voltage to 1000 (equal to 1 V).
- Set **AI Voltage Span** is 4000 (equal to 4 V = 5 V 1V).
- When reading the full 20-bit result, the scaling factor is 3.8147 mV per LSB.
- When reading only the most significant 16 bits, the scaling factor is 61.035 mV per LSB.

Recommended settings for 0 to 10 V sensors:

- Set Al Zero Voltage to 0 (equal to 0 V).
- Set Al Voltage Span to 10000 (equal to 10 V).
- When reading the full 20-bit result in **AI Integer Result**, the scaling factor is 3.8147 mV per LSB.
- When reading only the most significant 16 bits in **AI Integer Result**, the scaling factor is 61.035 mV per LSB.

For other input ranges or for fine tuning the inputs:

- Set AI Zero Voltage to the minimum input voltage.
- Set **AI Voltage Span** to the input span = maximum input voltage minimum input voltage.
- When reading the full 20-bit result, the scaling factor is AI Voltage Span / 1048576.
- When reading only the most significant 16 bits, the scaling factor is AI Voltage Span / 65536.
- For backwards compatibility, a setting of 0 forces the AI Voltage Span to 10000 mV.

11.4.10. 40112 to 40119: AI, AO Zero Current

When the channel is used as an Analog Input, this register is the current that results in the Analog Input reporting 0 in the **AI Integer Result** register.

- The scaling factor for this register is 1 μ A per bit and the valid range is from 0 to 25000 μ A.
- This register is useful for:
 - translating offset sensors such as 4 to 20 mA transmitters so that their minimum output reports 0 in the **AI Integer Result** register.
 - adjusting Analog Input readings to provide calibration capabilities.

When the channel is used as an Analog Output this register is the current that is output when the **AO Command** register is set to 0.

Page 88 of 103

Copyright © 2019 FreeWave

- The scaling factor for this register is 1 µA per bit and the valid range is from 0 to 25000 µA.
- This register is useful for outputting 4 to 20 mA signals so that their minimum output is 4 mA when the **AO Command** register is 0.

Note: See the description for 40120 to 40127: AI, AO Current Span (on page 89) for recommended settings with 4 to 20 mA sensors.

11.4.11. 40120 to 40127: AI, AO Current Span

The scaling factor for this register is 1 μ A per bit and the valid range is from 0 to 25,000 μ A.

- This register is useful for translating sensors such as 4 to 20 mA transmitters so that their maximum output reports full scale in the **AI Integer Result** register.
- For 16-bit readings full scale is 65535, and for 20-bit readings full scale is 1,048,575.

When the channel is used as an Analog Input this register sets the span and scaling factor for the **AI Integer Result** register. This register added to **AI**, **AO Zero Current** is the input current that results in full scale in the **AI Integer Result** register.

Recommended settings for 4 to 20 mA sensor inputs:

- Set Al Zero Voltage to 4000 (equal to 4 mA).
- Set Al Voltage Span to 16000 (equal to 16 mA = 20 mA 4 mA).
- When reading the full 20-bit result in **AI Integer Result**, the scaling factor is 15.259 nA per LSB.
- When reading only the most significant 16 bits in **AI Integer Result**, the scaling factor is 244.14 nA per LSB.

For all other input ranges or for fine tuning the inputs:

- Set Al Zero Voltage to the minimum input voltage.
- Set Al Voltage Span to the output span = maximum input current minimum input voltage.
- When reading the full 20-bit result in **AI Integer Result**, the scaling factor is **AI Voltage Span** / 1048576.
- When reading only the most significant 16 bits in **AI Integer Result**, the scaling factor is **AI Voltage Span** / 65536.

When the channel is used as an Analog Output this register sets the span and scaling factor for the **AO Command** register. This register added to **AI**, **AO Zero Current** is the output current when full scale is entered into **AO Command**.

Recommended settings for 4 to 20 mA outputs:

- Set AI, AO Zero Voltage to 4000 (equal to 4 mA).
- Set AI, AO Voltage Span is 16000 (equal to 16 mA = 20 mA 4 mA).
- When writing all 12 bits in AO Command, the scaling factor is 15.259 nA per LSB.
- When writing all 14 bits in **AO Command**, the scaling factor is 61.035 nA per LSB.
- When writing all 15 bits in AO Command, the scaling factor is 122.07 nA per LSB.
- When writing all 16 bits in **AO Command**, the scaling factor is 244.14 nA per LSB.

Copyright © 2019 FreeWave

For all other output ranges or for fine-tuning the inputs:

- Set AI, AO Zero Voltage to the minimum output current.
- Set AI, AO Voltage Span to the output span = maximum input current minimum input voltage.
- When writing all 12 bits in **AO Command**, the scaling factor is **AI Voltage Span** / 4096.
- When writing all 14 bits in **AO Command**, the scaling factor is **AI Voltage Span** / 16384.
- When writing all 15 bits in **AO Command**, the scaling factor is **AI Voltage Span** / 32768.
- When writing all 16 bits in **AO Command**, the scaling factor is **AI Voltage Span** / 65536.

For backwards compatibility, a setting of 0 forces the AI, AO Current Span to 20000 µA..

11.4.12. 40128: Comm Connection

This is the serial port connector type of a Serial Base:

- RS-232(0)
- RS-422(1)
- RS-485(2)

11.4.13. 40129: Comm Timeout Latch

In case of communication failure, channels configured as Digital Output, Analog Output, and Sensor Power can be set up to go to default states.

- This register serves to inform (after communication is restored) that the communication timeout occurred long enough to activate the defaults.
- This register remains at (1) ON until set to (0) OFF by Modbus command.
- Setting to 0 clears the latch.

11.4.14. 40130: Comm Port Baud Rate

The baud rate of the serial port.

The default setting is (0) 19200.

The options are:

- (0) 19200
- (1) 150
- (2) 300
- (3) 600
- (8) 14400

• (5) 2400

• (6) 4800

• (7) 9600

- (9) 19200
- (10) 28800
- (11) 38400
- (12) 57600
- (13) 76800
- (14) 115200
- (15) 153600
- (16) 230400

• (4) 1200

11.4.15. 40131: Comm Port Parity

The parity of the port connected to the device. The options are:

Page 90 of 103

Copyright © 2019 FreeWave

LUM0017AB Rev Sep-2019

- (0) None
- (1) Even
- (2) Odd

11.4.16. 40132: Comm Port Stop Bits

There currently is only one selection for Com Port Parity: (1) Even.

11.4.17. 40133: Modbus Min Transmit Inter-Message Interval

The interval cannot be shorter than 2 ms; regardless of a setting in this register, the interval is automatically adjusted to be shorter than 3.5 character lengths.

- On the receive side, the interval between messages must be at least 2 ms.
- If the interval is less than 0.4 ms, received characters will be processed as one message.
- If the interval is between 0.4 and 2 ms, the Modbus message processing will not be reliable.

11.4.18. 40134: RS-485 Turn-On Delay

If the **Comm Connection** register is set to (2) RS-485, set the number of milliseconds (ms) between the RS-485 transmitter turning on and the character transmission start.

- Set the delay between 0 and 10 ms.
- The default setting is 1 ms.

11.4.19. 40135: RS-485 Turn-Off Delay

If the **Comm Connection** register is set to (2) RS-485, set the number of milliseconds (ms) between the RS-485 character transmission end and the transmitter turning off.

- Set the delay between 0 and 10 ms.
- The default setting is 1 ms.

Page 91 of 103

12. Release Notes

These sections describe the additions, changes, known limitations, and workarounds in each software version. The most recent version is listed first.

Version 2.2.0

Release Date: January 2012

Additions and Changes

- The 40000 to 40003: AO Command register cannot exceed the max output current of 22 mA. If the AO Command register is set so the value of that register and the 40112 to 40119: AI, AO Zero Current register together are more than 22 mA, the AO Command current is capped so the total current does not exceed 22 mA.
- Corrected power LED blinking issue.
- Corrected reporting of a signed analog input value.
- Fixed a pulse counter bug.

Known Limitations and Workarounds

• Channels 11 and 12 in the IOE-4440 and IOEX-4440 models do not function as high-speed counters.

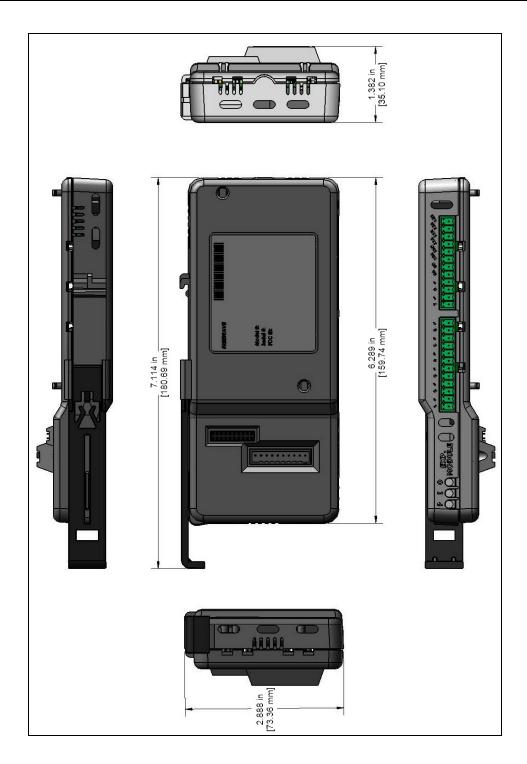
Version 2.1.0

Release Date: August 2011

Additions and Changes

- Added support for 153.6 and 230.4 kbaud data rates. Removed 110 kbaud support.
- Increased max pulse counting frequency to 800 Hz with 60/40 duty cycle.

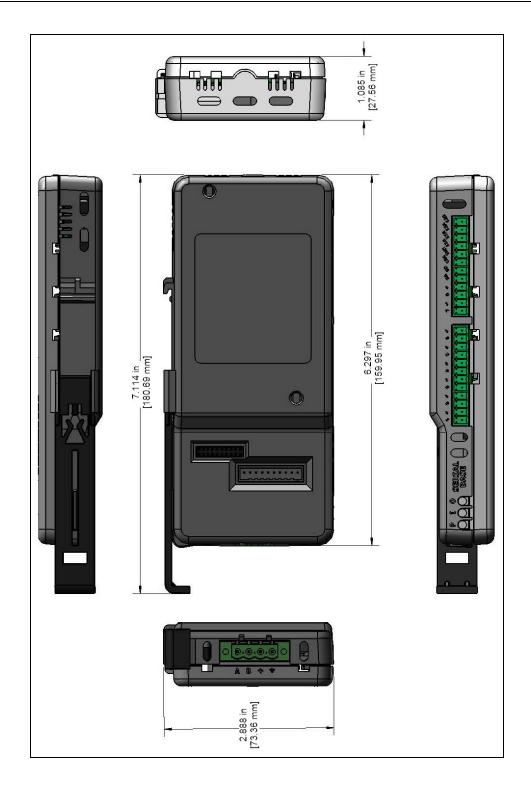
Page 92 of 103


Copyright © 2019 FreeWave

- Added software pulse counter de-bouncing. With de-bouncing, the maximum counting frequency is 10 Hz; without de-bouncing the maximum counting frequency, as stated above.
- You can now set the pull-up resistor and pull-down resisters for a Digital Output using the same register and hardware as the Digital Input.
- Reduced max digital output current from 25 mA to 22 mA.

Page 93 of 103

Copyright © 2019 FreeWave


13. Expansion Module Dimensions

Page 94 of 103

Copyright © 2019 FreeWave

14. Serial Base Dimensions

LUM0017AB Rev Sep-2019

Page 95 of 103

Copyright © 2019 FreeWave

Appendix A: Technical Specifications

General Information

Technical Specifications			
Specification	Description		
Operating Temperature	-40°C to +75°C		
	-40°F to +167°F		
Humidity	0 to 95% non-condensing		
Dimensions	181.0 L x 79.4 W x 25.4 H (mm)		
	7.13 L x 3.13 W x 1.0 H (in.)		
Weight	158.8 g (0.35 lbs.)		
Mounting	Integrated 35 mm DIN rail clip		

- Digital Input (on page 97)
- Digital Output (on page 97)
- Analog Input (on page 97)
- Analog Output (on page 97)
- Sensor Power (on page 98)
- Part Number Summary (on page 98)

LUM0017AB Rev Sep-2019

Page 96 of 103

Copyright © 2019 FreeWave

Digital Input

Digital Input					
	Universal Channels	Input-only Channels	Isolated Channels		
Input ON voltage	> 3.0 V	> 3.0 V	> 3.2 V		
Input OFF voltage	< 2.5 V	< 2.5 V	< 1.2 V		
Pulse-counting frequency, standard	100 Hz or 4 ms	100 Hz or 4 ms	100 Hz or 4 ms		
Pulse-counting frequency, high	-	10 kHz or 40 µs	10 kHz or 40 µs		
Pull-up resistor	1 kΩ to 3 V	1 kΩ to 3 V	-		
Pull-down resistor	10 k Ω to ground	10 k Ω to ground	-		

Digital Output

Digital Output

3 ·· ·· ··			
	Universal Channels	Input-only Channels	Isolated Channels
Output ON current	1 A to ground	-	2 A
Output ON impedance	0.2Ω to ground, plus diode	-	0.120 Ω
Output OFF impedance	2.34 k Ω to ground	-	10 MΩ
External voltage connection	V BAT	-	250 V

Analog Input

Analog Input

	Universal Channels	Input-only Channels	Isolated Channels	
Resolution	20 bits	20 bits	-	
Maximum Reading Error	0.10%	0.10%	-	
Voltage Input Range	-2.5 to 12.5 V	-2.5 to 12.5 V	-	
Current Input Range	0 to 22 mA	0 to 22 mA	-	
Current Sense Resistor	250 Ω	250 Ω	-	

Analog Output

Analog Output			
Universal Channels	Input-only Channels	Isolated Channels	
0 to 22 mA	-	-	

LUM0017AB Rev Sep-2019

Page 97 of 103

Copyright © 2019 FreeWave

Analog Output				
	Universal Channels	Input-only Channels	Isolated Channels	
Maximum Output Error	0.25%	-	-	

Sensor Power

Sensor Power

	Universal Channels	Input-only Channels	Isolated Channels
Voltage Output	0.5 V below V BAT	-	-
Current Output	Up to 50 mA	-	-

Part Number Summary

Serial Base	IOE-4440	IOE-4422	IOE-4404
Expansion Module	IOEX-4440	IOEX-4422	IOEX-4404
Number of Universal Channels	4	4	4
Number of Input-Only Channels	4	4	4
Number of Isolated Digital Input Channels	4	2	0
Number of Isolated Digital Output Channels	0	2	4

LUM0017AB Rev Sep-2019

Page 98 of 103

Copyright © 2019 FreeWave

Appendix B: I/O Device LEDs

The LEDs on the Serial Base and Expansion Modules in a stack help identify the state of the system and the current action happening with each device in the stack:

- Power Labeled with a P in enclosed Serial Bases and Expansion Modules, this is the LED closest to the edge of the device.
- Inbound Labeled with an I in enclosed Serial Bases and Expansion Modules, this is the middle LED.
- Outbound Labeled with an O in enclosed Serial Bases and Expansion Modules, this is the LED closest to the I/O channels.

Warning! If all the LEDs are Solid Red • or Blinking Red •, the device is receiving a firmware upgrade. Do NOT unplug the device or remove the device's power during a firmware upgrade. The device could become inoperable.

- Expansion Module LEDs (on page 100)
- Serial Base LEDs (on page 100)

LUM0017AB Rev Sep-2019

Page 99 of 103

Expansion Module LEDs

LED State	Power (P)	Inbound (I)	Outbound (O)
Solid Green 🞴	Power on	-	-
Intermittent Green Flash	Low power mode	-	Sending information down the stack to the base
Blinking Green 🖯 *	Communication reset mode, device is gathering startup settings	-	-
Solid Red 💻	Firmware upgrade initiated*	1. When the other LEDs are also solid red a firmware upgrade has been initiated	1. When the other LEDs are also solid red a firmware upgrade has been initiated
		2. Receiving a command from the base	2. Receiving a command from the base
Intermittent Red Flash 阿	-	Device is being polled	-
Blinking Red 😑 *	Internal checks after firmware upgrade	Internal checks after firmware upgrade	Sending information to devices in the stack

Note: *The Incoming and Outgoing LEDs may appear to blink depending on how many registers are read during a single polling cycle.

Serial Base LEDs

Serial Base LEDs				
LED State	Power (P)	Inbound (I)	Outbound (O)	
Solid Green 💻	Power on	-	-	
Intermittent Green Flash	Low power mode	Receiving a message from the rest of the stack	Device is sending data after being polled	
Blinking Green 😑	Communication reset mode, device is gathering startup settings	-	Device is sending data when polled	
Solid Red 💻	Firmware upgrade initiated*	When the other LEDs are also solid red a firmware upgrade has been initiated.	When the other LEDs are also solid red a firmware upgrade has been initiated.	
Intermittent Red Flash ف	-	 If other LEDs are also intermittently flashing red, internal checks after firmware upgrade. Device is being polled. 	If other LEDs are also intermittently flashing red, internal checks after firmware upgrade.	
Blinking Red 😑	Internal checks after firmware upgrade	Internal checks after firmware upgrade	Sending information to devices in the stack	

LUM0017AB Rev Sep-2019

Page 100 of 103

Copyright © 2019 FreeWave

Appendix C: FreeWave Legal Information

Export Notification

FreeWave Technologies, Inc. products may be subject to control by the Export Administration Regulations (EAR) and/or the International Traffic in Arms Regulations (ITAR). Export, re-export, or transfer of these products without required authorization from the U.S. Department of Commerce, Bureau of Industry and Security, or the U.S. Department of State, Directorate of Defense Trade Controls, as applicable, is prohibited. Any party exporting, re-exporting, or transferring FreeWave products is responsible for obtaining all necessary U.S. government authorizations required to ensure compliance with these and other applicable U.S. laws. Consult with your legal counsel for further guidance.

Restricted Rights

Any product names mentioned in this manual may be trademarks or registered trademarks of their respective companies and are hereby acknowledged.

This manual is only for use by purchasers and other authorized users of FreeWave products.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, or for any purpose without the express written permission of FreeWave Technologies, Inc. FreeWave reserves the right to make changes to this manual without notice. FreeWave assumes no responsibility or liability for the use of this manual or the infringement of any copyright or other proprietary right.

FreeWave products are designed and manufactured in the United States of America.

UL Notifications

Models IOE-4404, IOE-4422, IOE-4440, IOEX-4404, IOEX-4422, and IOEX-4440 are suitable for use in Class1, Division 2, Groups A, B, C, and D or non-hazardous locations only.

The connectors shall not be connected or disconnected while circuit is live unless area is known to be non-hazardous.

Warning! Explosion Hazard - Substitution of any component may impair suitability for Class 1, Division 2.

LUM0017AB Rev Sep-2019

Page 101 of 103

Copyright © 2019 FreeWave

Warning! Do not remove or insert the diagnostics cable while the circuit is live unless the area is known to be free of ignition concentrations or flammable gases and vapors.

Input voltage for the IOE and IOEX models is +7.5 to +30 VDC.

Subject Devices are to be installed in the vertical orientation only. Devices were tested for vertical orientation only and not the horizontal orientation.

Important!: Input power and all I/O power, except relay output contacts, shall be derived from a single Class 2 power source, or equivalent.

GNU License Notification

STOP

Some of the software in the software is licensed under the GNU General Public License and other Open Source and Free Software licenses. You can obtain corresponding source by contacting FreeWave and requesting the source on CD.

Page 102 of 103

Copyright © 2019 FreeWave

FREEWAVE